
Saarland University
Computer Science Department

Master Thesis

Evolutionary Test Generation for
Autonomous Vehicles

Author:
Marc Müller, B.Sc.

Supervisor:
Prof. Dr.-Ing. Andreas Zeller

Reviewer:
Dr. Stefan Nürnberger

Advisor:
Alessio Gambi, Ph.D.

Submitted Wednesday 12th September, 2018

Statement

I hereby confirm that I have written this thesis on my own and that I have not used any other
media or materials than the ones referred to in this thesis.

Erklärung

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel verwendet habe.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the public by
having them added to the library of the Computer Science Department.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die Biblio-
thek der Informatik aufgenommen und damit veröffentlich wird.

Saarbrücken, 12.09.2018
Marc Müller

Abstract

Autonomous vehicles are becoming an increasingly relevant part of the automotive in-
dustry and will only become more important in the near future. Ensuring safety is naturally
important when handing over full control of a vehicle to software, but neither industry
nor authorities have settled on a standard way to certify autonomous vehicles. Deploying
autonomous vehicles for testing in regular urban traffic is a common but costly and risky
method. Simulated, or virtual, tests have been introduced as a way to expose problems
before deployment, but traditional software testing techniques cannot cope with the mas-
sive amount of situations an autonomous vehicle faces. For limited cases, more advanced
techniques like search-based testing show more promising results. This work will continue
in that direction, utilising procedural content generation and genetic algorithms to evolve
driving tasks meant to test the lane keeping capability of autonomous vehicles. Meaningful
metrics to characterise input scenarios, output behaviour of the car, and how well tests
cover the input space will be introduced to guide test suite evolution towards stressing the
vehicle’s lane keeping behaviour effectively.

Zusammenfassung

Autonome Fahrzeuge sind ein zunehmend wichtiger Teil der Automobilindustrie und wer-
den in naher Zukunft weiterhin an Relevanz gewinnen. Die Gewährleistung der Sicherheit
bei programmgesteuerten Fahrzeugen ist offensichtlich notwendig, jedoch haben sich bis-
her weder Industrie noch Behörden auf standardisierte Testverfahren geeignet. Autonome
Fahrzeuge im Alltagsverkehr einzusetzen ist eine bislang übliche, aber teure und riskante Me-
thode zum Testen. Simulierte oder virtuelle Testverfahren wurden als Mittel vorgeschlagen,
Fehler vor dem Einsatz dieser Fahrzeuge zu identifizieren, aber handelsübliche Software-
Testverfahren sind der Vielfalt von Situationen, die autonome Fahrzeuge bewältigen müssen
nicht gewachsen. Suchbasierte Methoden haben sich hingegen als vielversprechender erwie-
sen. Meine Arbeit forscht weiter in diese Richtung und setzt prozedurelle Methoden zur
Straßengeneration & genetische Algorithmen ein, um die Spurhaltefähgikeiten von auto-
nomen Fahrzeugen zu testen. Metriken zur Analyse von Testszenarien, dem Verhalten des
Fahrzeuges und inwiefern Testsätze mögliche Szenarien abdecken werden definiert und an-
gewandt, so dass Tesgenerierung das Fahrzeug sinnvoll und effektiv auf die Probe stellt.

Contents

1 Introduction 6

1.1 Problem Statement . 8

1.2 Contributions . 9

1.3 Structure . 10

2 Background 10

2.1 Genetic Algorithms . 10

2.2 Polylines . 11

2.3 Video Game Engines . 12

3 State of the Art 12

3.1 Naturalistic Field Operational Tests . 12

3.2 Simulation Testing . 13

3.3 Video Game Engines as Simulators . 15

3.4 Procedural Content Generation . 17

3.5 Conclusion . 18

4 Method 18

4.1 Approach Overview . 19

4.2 Test Overview . 20

4.2.1 Lanes . 22

4.2.2 Road Segments . 22

4.2.3 Roads . 25

4.2.4 Road Networks . 26

4.2.5 Boundary . 28

4.2.6 Tests . 29

4.3 Generation & Modification . 30

4.3.1 Road Segment Generation . 30

4.3.2 Road Generation . 31

4.3.3 Test Generation . 33

4.4 Genetic Algorithm . 33

4.4.1 Crossover (Join) . 34

4.4.2 Crossover (Merge) . 35

4.4.3 Mutation (Segment replacement) . 36

4.4.4 Notes on the Genetic Algorithm . 37

4.5 Test Execution . 38

4.6 Metrics . 38

4.6.1 Trace Analysis . 38

4.6.2 Lane Distance Fitness . 39

4.6.3 Suite Diversity . 40

4.6.4 Auxiliary data . 41

5 Implementation 42

5.1 BeamNG.research Overview . 42

5.2 Test Execution . 43

6 Evaluation 44

6.1 Test subject . 45

6.2 Experiment 1: Comparison with Random . 46

6.2.1 Experiment design . 46

6.2.2 Hypotheses . 47

6.2.3 Results . 48

6.2.4 Discussion . 48

6.3 Experiment 2: Single- versus Multi-road . 51

6.3.1 Experiment design . 51

6.3.2 Hypotheses . 52

6.3.3 Results . 52

6.3.4 Discussion . 52

6.4 Experiment 3: Increasing diversity . 53

6.4.1 Experiment design . 54

6.4.2 Hypotheses . 54

6.4.3 Results . 55

6.4.4 Discussion . 56

6.5 Experiment 4: Mutations . 58

6.5.1 Experiment design . 58

6.5.2 Hypotheses . 58

6.5.3 Results . 59

6.5.4 Discussion . 59

7 Conclusions 59

7.1 Limitations . 61

8 Future Work 62

8.1 Different Diversity Metric . 62

8.2 Varying Height . 62

8.3 Varying Lane Width . 62

8.4 Multiple Lanes . 63

8.5 Obstacles on the Road . 63

8.6 Let Ego-Vehicle Pick a Path . 63

1 Introduction

Over the past few years, the topic of automating cars with the help of software has become
an important part of the industry and will only grow in relevance [1]. The level of automation
varies. SAE International has grouped different degrees of automation into five distinct levels [2],
starting at Level 0 for no automation, going to Level 1 for advanced driver-assistance systems
(ADAS) that help the driver operate a vehicle, and increasing automation up until Level 5 —
fully autonomous vehicles, correctly navigating through roads, and obeying traffic laws. Steering
wheels are considered optional at this level.

There are several ongoing projects progressing towards fully autonomous vehicles (e.g., Waymo
[3], Tesla Autopilot [4], Uber [5], etc.) The state of the art in this field is mature enough to be
currently under testing in everyday urban traffic [6, 7, 5]. These systems promise to increase
safety [8], presuming software to be more reliable at driving than humans. In reality, this is not
the case yet. The vehicles — partially or fully automated — deployed in urban environments
experienced numerous software faults [9, 10], have caused crashes [11, 12, 13], and even caused
fatal accidents [14, 15, 16]. Such faults are apparent even in experimental testing before any
deployment [17, 18]. Especially cases where the cause of the accident is determined to be a
software fault alone — such as the fatal Uber crash where the autonomous vehicle’s AI failed to
identify a pedestrian [5] — motivate more rigorous testing of autonomous vehicle software.

The importance of such testing is evident from the severity of their failures and also makes
sense intuitively: Failures in safety-critical software that’s meant to operate vehicles with human
passengers can easily lead to crashes. In the worst case, these would be deadly. Thus, before fully
autonomous vehicles or even just partially automated systems can enter the mainstream, their
functionality needs to be tested extensively. This includes the aforementioned safety concerns,
but also the quality of driving [19]. A car that might be able to travel from point A to point
B without an accident could still be uncomfortable for the user simply due to the car driving
poorly (e.g., sharp turns, sudden de-/acceleration, causing motion sickness, etc.)

Despite the importance of testing, the industry has yet to settle in on some standardised proce-
dures to test automated vehicles [20]. Existing methods to ensure the safety of non-autonomous
vehicles before deployment don’t translate well into the space of autonomous cars, as others have
argued [21, 22, 23]. How to apply traditional software testing techniques to autonomous vehicles
is also a fairly open topic, as shown in Section 3. Putting autonomous vehicles on trial in the
real world or tailored driving challenges is a common approach [24, 25, 26, 6]. These are called
“Naturalistic Field Operational Tests” (N-FOT.) Trials like that would need to cover hundreds
of billions of kilometres driven to reliably compare their failure rates to that of human-driven
vehicles [27].

An alternative to Naturalistic Field Operational Tests are simulated tests. To avoid the cost
of setting up a physical testing environment or the risks associated with testing autonomous
vehicles in normal traffic, the software controlling an autonomous vehicle is fed with simulated
data to see how it responds [28]. This is becoming a more common practice, a shown by Uber
suspending its N-FOT testing programme in favour of simulation tests due to a fatal accident
[15, 5]. Vehicle testing in simulation varies in scope, some works focusing on simulating a single
or few sensors to test specific functions of the vehicle such as speed & position sensors [29, 30],
testing motion planning [31, 32], going for a realistic simulation of visual data to test lane and

6

object detection capabilities [33, 34, 35, 36, 18, 17], or evaluating behaviour at a higher level of
abstraction to see how the vehicle acts in traffic or other scenarios [37, 38, 39, 40, 41, 42, 43].
Section 3 goes into the works that have shown simulation testing to be effective for autonomous
vehicles.

Depending on the type of simulation, requirements for the simulation framework can be very
stringent, as the simulator needs to provide data such as realistic graphics, run complex physics
computations to accurately model movements that are difficult to generate efficiently, and model
driving scenarios to be executed in the simulation. Given the multitude of factors that impact
driving in the real world, for a simulation to have external validity, it needs to include many
of these factors. This inherently makes the task of providing simulations hard. Some of these
problems have been worked on in the context of driving simulators for humans [44, 45, 46], but
also video game engines, which often take on the task of simulating 3D worlds with physics in real
time. Both of these are already established in research, with video game engines in particular
providing simulations good enough to have already been used in testing of autonomous vehicles
[47] and training deep neural networks which were then able to drive in the real world [48, 49, 50].
This means, not only were the simulations suitable for testing, they even successfully served to
provide ground truth data for an AI to learn how to navigate in the real world.

With the use of simulators there also comes the challenge of defining the content of the simulation;
the layout of the roads, the environment roads are in, obstacles, other vehicles, and so on. These
are things that either naturally exist in the real world, or were built over years of civilisation,
but need to be re-created virtually to be used in a simulator. The aforementioned work by
Chen et al. [48] and Johnson-Roberson et al. [49] relied on content that the simulator or video
game shipped with. For example, [49] relied on the rich open world found in Grand Theft Auto
V [51], which features varying weather conditions, time of day changes, other vehicles on the
road, pedestrians, and so on. That content was hand-crafted by over 1000 people over five years
[52]. Creating more or changing existing content would require a non-trivial amount of work by
the testers [53]. This motivates automating generation as much as possible.

The problem of such content creation affects the gaming industry just as it affects the use of
game engines as simulators. Because of this, the field of procedural content generation (PCG) has
emerged within the gaming industry [54, 55]. PCG tries to solve the problem by algorithmically
— as opposed to manually — producing content for games. With regards to driving in particular,
works like [56] have created methods on how to produce city-like street networks and [57] describes
a method of creating and refining race tracks through evolutionary computation. These works
focus on making content engaging to humans and need to be adapted to be useful for the domain
of testing autonomous vehicles.

Naturally, generative approaches can also be applied for other purposes. In [58, 59, 60, 61] the
authors automatically generate content to test components of ADAS or autonomous vehicles. In
this context, the content generation is comparable with automatic test generation, along with
other concepts like search-based procedural content generation [62] aligning with search-based
test generation. As argued in [58, 60], the amount of options to generate tests is huge, even
restricted to the domains of the respective papers (pedestrian detection and navigation.) A way
to identify useful tests and guide generation accordingly is needed to be able to conquer the sheer
amount of options.

One such way are genetic algorithms (GA) [63]. GAs are an optimisation method that relies on
random combinations and mutations of a population according to some fitness for a purpose. In

7

[58], for example, this was used to rank scenarios of pedestrians crossing a street according to
how close they were to a vehicle, looking for tests that would likely cause a collision. This way,
the testers were able to guide generation towards relevant test cases, saving time on redundant
and uninteresting ones.

With regards to lane keeping, Tian et al. [17] used search-based testing modify images of streets
to simulate different weather conditions. Using images taken from real roads they generated
images of those roads under varying weather and lighting conditions and successfully exposed
inconsistent behaviour in the vehicle AI under test compared to the reference set. The predicted
steering angle of the AI for an input image served as the basis to detect inconsistencies: If the AI
predicated a different steering angle after modifying the weather, it was considered inconsistent.
No driving was performed — simulated or real.

1.1 Problem Statement

Autonomous vehicles should be able to correctly drive down a lane. Staying within a lane is
the one of the most fundamental tasks in urban driving. However, state of the art AIs can be
fooled into inconsistent lane keeping by varying weather conditions [18, 17] and lane detection
methods in general aren’t fully reliable yet [64]. Even among leaders of the industry, this task is
not solved, as shown by accidents like when Tesla’s Autopilot ended up steering into a concrete
lane divider [12, 16]. One of these crashes was fatal. In these accidents, the vehicle collided
with the environment. Failing to keep to the lane can also result in the vehicle driving into
oncoming traffic, which is a particularly dangerous situation for everyone involved. As such,
testing lane keeping behaviour in N-FOT studies carries many risks with it and has already cost
lives. Simulation tests are a way to avoid these risks, but, as Section 3 shows, current research is
lacking methods of content creation to test lane keeping in simulation. State of the art research
has only focused on steering angle prediction [17], not actual lane keeping, or employed näıve
approaches like random generation that leave doubts as to how effectively the search-space was
covered [59]. Within this domain, the amount of options during testing is massive. Enumerating
them would encompass every lane a vehicle could plausibly have to drive on. Depending on which
aspects of real-life lanes are considered during testing, this could include the Cartesian product
of every possible length of road, shape of a turn, width of lanes, variations in width, amount of
lanes in a road, in-/decline of roads, random artifacts in the ground like potholes, and so on. If
one expanded into how a road looks visually — since visual processing is a common component
in autonomous vehicles [65] — the amount of options grows even more: Every possible lane
divider, lane divider length, colour of dividers, ground texture, environmental factors such as
weather & time of day, and so on — the possibility space is huge. This makes it unlikely that
random search covers a meaningful subset of it and a more sophisticated method is required.

In this thesis I take on the problem of automatically generating effective tests for the lane
keeping ability of autonomous vehicles. These tests require the vehicle to drive along a certain
path through complex road networks. To this end, I propose an evolutionary approach to road
network generation that iteratively refines a test suite towards detecting erroneous lane keeping
behaviour of autonomous vehicles. I introduce algorithms for road generation and operations
that enable the use these networks a genetic algorithm. For these I define formalisations of
road networks that leverage prior work on encoding road geometry (e.g., CommonRoad [32],
OpenStreetMap [66].) All of these components are required to produce valid and solvable tests

8

for the ego-vehicle to solve. How I achieve this is described in detail. To make this task more
manageable, the search space is restricted to fixed-width flat roads with a lane on each side, but
ideas to expand this in future work are presented.

How to analyse a vehicle’s performance regarding lane keeping whilst driving on these roads is
defined and how that factors into the evolution of a test suite is discussed. Generated tests are
executed within a driving simulator, expanding the current body of work regarding automatic
test generation for simulation testing of autonomous vehicles. As per [17], the diversity of input
in testing steering angle predictions plays an important role. How to achieve higher diversity
with an approach like this is shown and evaluated.

The method I propose is deliberately kept generic enough to be able to work with various driving
simulators, but the considerations that went into designing tests intended for simulation and
which factors go into deciding on driving simulators are presented. The simulator used during
the evaluation is BeamNG.research [67], a simulator with particular focus on driving physics,
which makes it suitable for evaluation of driving behaviour.

I evaluate the proficiency of my approach with regards to eliciting lane keeping failures and
producing diverse test suites in a series of experiments that gradually refine the generation process
from a simple but effective one that focuses on one road at a time to a more general and improved
approach able to generate convoluted networks of multiple roads. The first batch of experiments
focuses on evolving tests with single roads and comparing them to random generation, showing
my approach to be superior and establishing that this domain requires non-trivial generation
methods. The second set of experiments improves upon this by expanding test generation to
include multiple roads and intersections, demonstrating how inclusion of intersections can reveal
more failures than single roads and improve efficiency of the generation. The third and fourth
series of experiments will alter fitness evaluation and generation method to foster more diversity
in test suites.

My work is proven to be an effective way of finding lane keeping failures within autonomous
vehicle AIs in simulation testing and establishes a method more sophisticated than mere random
generation. Possible improvements to this are presented for future work.

1.2 Contributions

The main contributions of my work are:

� Providing a way to specify roads that’s conducive to generation and manipulation.

� Defining operations used to refine such roads towards producing lane keeping failures.

� Showing lane centre distance as fitness is viable to evolve test suites towards producing
lane keeping failures.

� Showing trivial approaches like random generation are insufficient in this domain.

9

1.3 Structure

The thesis is laid out in the following sections:

� Section 2 provides background information on the topics of road specification, genetic
algorithms, and video game engines.

� Section 3 critically discusses the current state of the art of relevant research, taking a
look at autonomous vehicle testing, simulation tests, and procedural content generation in
particular.

� Section 4 formalises the concepts used in road generation, describes the algorithms and
operators used in generation & manipulation, how tests are executed and evaluated.

� Section 5 gives an overview on how the presented method is implemented.

� Section 6 describes the empirical evaluation of my method. It covers a series of experiments
carried out to examine the merits of my approach, presents their results, and discusses their
implications for my and future work.

� Section 7 provides an overall discussion of the work and what conclusions can be drawn
from it.

� Section 8 contains avenues for future work that would improve the approach and evaluation.

2 Background

This section provides necessary background information required to understand the thesis, in-
cluded to make the work more self-contained.

2.1 Genetic Algorithms

A genetic algorithm (GA) is an optimisation technique inspired by the theory of evolution, which
iterately refines a population of individuals according to some fitness [63]. What “population”,
“individual” and “fitness” means is specific to the domain a GA is applied to. For example, in
my case, the population is a test suite, each individual a test, and fitness is the test’s effectiveness
in producing failures. From these individuals, the GA selects pairs according to their fitness and
applies so-called crossover and mutation operations to them to produce offspring. What these
operators do is also domain-specific. In my case, for example, crossing over two roads means
splitting them at random points and criss-cross combining the resulting parts. Mutating is, for
example, altering a turn to be sharper or wider. With mates selected and offspring produced,
the GA replaces the current population with the offspring one and repeats the process for this
new generation. Over time, randomly selecting more fit individuals and re-combining & altering
them leads to suites of individuals with high fitness.

10

It’s important to note that selection does not strictly focus on more fit tests. It is intentionally
randomised to enable more exploration of the search space. A common method of selection is
called Tournament Selection, where individuals are picked randomly to enter into metaphorical
tournaments where the most fit individuals win and get selected. This is random, because the
entrants to the tournament are selected randomly, but gives preference to fit ones as, the winner
is determined by fitness.

To guarantee some fit individuals do survive until the next generation, a GA can be configured
to use what’s called “elitism.” With an elitism of one, for example, a GA will move the most fit
individual unaltered into the next generation. For an elitism of two, it would be the two most
fit individuals, and so on. This avoids killing off very fit individuals due to mere randomness.

2.2 Polylines

When representing roads digitally, there is no obvious choice of format. The shapes roads can
have in real life are very complicated. Depending on the domain, different representations are
more suitable. For example, in visual processing, road representations should naturally include
visual artefacts of roads such as the colour and shape of lane markers or the texture of the ground.
In motion planning, these details are less important and the shape of the road is given more focus.
My work is in this domain and a look at related work reveals so-called polylines to have been
used effectively in projects like CommonRoad [32], OpenStreetMap [66], and OpenDrive [68].
Polylines are a way of defining lines similar to how polygons are defined: as a discrete sequence
of points [69]. In the context of roads, they have been used for encoding by specifying polylines
that describe the outer edges of roads/lanes. Their utility in this domain is the ease with which
precise shapes can be defined. Within my work, I consider a polyline as:

Definition 2.1 (D2.1). A polyline p = ((x1, y1), ..., (xn, yn)) is a finite sequence of two-dimensional
coordinate pairs — also called “vertices.”

This definition can be expanded to arbitrary dimensions, but in my work, only two-dimensional
lines are needed because roads are assumed to be flat, so this definition suffices.

Certain operations are computationally easy with polylines, these include:

� Testing for intersections by looking for adjacent pairs whose corresponding line segments
intersect. This is important in my work, as it can be used to detect intersections between
roads.

� Computing the length of a polyline by adding up the lengths of each adjacent vertex pair’s
respective line segments. For road networks, this can be used to measure the length of a
road and the distance driven along it.

� Calculating the shortest distance of a point to the polyline by finding the shortest distance
to any adjacent vertex pair’s respective line segment. For example, given a lane and the
line describing its centre, the distance to said centre can be calculated easily. When done
with the position of the car, this value expresses how far away the vehicle is from the lane
centre.

� Applying affine transformations by applying them to each vertex. This allows for manipu-
lation of roads using common geometric operations such as rotation and translation.

11

2.3 Video Game Engines

Video games are technologically quite complex. Modern games usually include a variety of
computationally expensive tasks like rendering of high-resolution 3D models including textures,
playback of locational audio and music, simulating physics, real-time lighting simulation, dynamic
weather, dynamic time of day, artificial intelligence for non-player characters, networking for
multiplayer, efficient I/O operations to enable smooth simulations, and, in some cases, even
automatic generation of content to play. These components have the additional requirement
of being computable in real time, as video games ideally rely on refresh rates above 30Hz [70].
Reimplementing and optimising such a vast set of features for each game would obviously be
wasteful. Instead, as common software engineering practice recommends, these components get
re-used for various games, as shown in all the games using common engines like Unreal Engine
[71] or Unity 3D [72]. The bundle of these features and the API they are exposed through is
what’s called an “engine”. It is similar in concept to a framework or software development kit.

Many of the above features are relevant to the domain of driving simulations. Recreating vehicles
for simulations can be done with 3D models and textures, driving relies on simulation of physics,
producing sensor data such as a camera feed can be achieved by rendering the game world from
the camera’s perspective, and so on. My work in particular relies on BeamNG.research [67] as
the simulator, which is based on the Torque3D [73] engine and expands it to include detailled
soft-body physics simulations. Because of the overlap in problems games and simulators have to
solve, game engines have shown to be a useful tool in vehicle testing, as discussed in Section 3.

3 State of the Art

The fields of procedural content generation and autonomous vehicle testing are by now fairly
large. What follows is a closer look at current research indicating the state of the art.

3.1 Naturalistic Field Operational Tests

Autonomous vehicle testing is still a fairly open field [20] where a common approach is to sim-
ply test the vehicle in the real world. These so-called “Naturalistic Field Operational Tests”
(N-FOT) produce the most reliable and accurate results, as the car is being tested in the way
it’s supposed to be used: Driving itself around. The ego-vehicle is deployed with the sensors,
actuators, and the software required for operation and, optionally, additional testing software to
aid evaluation of the vehicle’s performance. Such a system is described by Belbachir et al. [74],
where a vehicle equipped with four cameras, a GPS, a LIDAR, and an intertia sensor was in-
strumented with hardware actuators (seen in Figure 1) including software meant to evaluate the
obstacle detection and path planning functionality of a vehicle as it is being driven. Similarly,
Althoff et al. [75] implemented an online verification method for autonomous vehicle testing. The
test subject was equipped with software that verified the vehicle’s decision making by performing
reachability analysis at runtime and ensuring the vehicle’s projected path never collides with sur-
rounding objects. While being the most authentic way of testing, N-FOT studies are impractical
and, in case of vehicle faults, even dangerous. There have already been fatal crashes involving

12

Figure 1: The hardware a vehicle is equipped with by Belbachir et al. [74] for online testing.

autonomous vehicles or advanced driver assistance systems in testing [76, 16, 15]. Besides the
danger, it’s also less practical to deploy a testing vehicle for every run to gather data. This
impracticality has implications for the certainty of the results: for a reliable safety comparison
between autonomous and human-driven cars, it would be required to perform these tests for bil-
lions of kilometres to reasonably argue about the safety of these autonomous vehicles compared
to human-driven ones [27]. This is because there are so many samples for human-driven cars
that any prediction of their risks is fairly reliable. This is not the case for autonomous vehicles.
With the technology only being available to few people, they’ll have a hard time catching up
with the data on traditional vehicles.

N-FOT studies suffer from a bias in where testing is performed, too. An example of this is
Volvo’s autonomous vehicle project not being able to recognise kangaroos [10], because they
never came up during testing in Sweden. For autonomous vehicles to become mainstream, they
need to be able to handle a large variety of scenarios. Currently, however, testing is slanted
towards locales where autonomous vehicles are being developed and the conditions specific to
those environments.

3.2 Simulation Testing

Simulations have emerged as a way to deal with some of the problems of N-FOT testing. These
don’t have to be fully simulated tests, but can be simulations based on data from N-FOT studies
like Zhou et al. [77]. They used a vehicle’s GPS information while driving to re-create the
roads it has driven on. This data was then used to do simulated tests of a vehicle’s adaptive
cruise control. Zhao et al. [78, 79] used data from N-FOT studies to build a model of driving
behaviour. This model then served as reference to run simulations of car-following and cut-in
scenarios and to evaluate the safety of an autonomous vehicle. It was possible to dramatically
reduce evaluation time by factors between 300 and 100,000 times. These works show promising
results, but still suffer from the reliance on initial N-FOT data for model building. This carries
with it the aforementioned difficulties and biases in obtaining such data.

13

A similar idea was described by Müller et al. [80] and Zhang et al. [18]. They took real life camera
data as a base and manipulated the recorded images to simulate the same image with different
weather conditions. These images were then used to evaluate image processing components used
in driving. If a test subject changed its behaviour from the reference images after their weather
was varied, it was considered inconsistent. This helped reveal flaws in the image processing
algorithm, as it was not robust against different weather situations. An interesting aspect of
generating such data was shown by Tian et al. [17]. Their work is similar to Zhang et al. [18]’s
in that they manipulated images to find inconsistencies in neural network models used in au-
tonomous vehicles, but they adapted the concept of coverage to the domain of neural networks.
During testing, the amount of neurons activated by an input was recorded and test data was
selected to maximise neuron coverage. They found that increasing coverage also helped find more
flaws. These works address the problem of obtaining data, because, instead of basing their sim-
ulations on data obtained from N-FOT studies like the one done by Zhou et al. [77], they could
rely on publicly available images thanks to the focus being on image processing. For example,
Zhang et al. [18] obtained driving footage under different weather conditions from YouTube.

Completely simulated testing has gained relevance as a way to avoid the drawbacks of N-FOT
testing and real world data collection entirely. This method is already used within the industry
[81, 5, 82], but the corresponding simulations are highly tailored to the respective product and
not publicly available. This area varies in how holistic the simulation is. Tools can focus on
simulating specific types of scenarios and sensor data, or try to cover multiple domains to allow
testing interactions between multiple components [47]. A testing tool like that is described by
Schuldt et al. [42]. It’s presented as a construction kit for virtual testing in which the tester
can define the testing environment, weather situation, time of day, surrounding traffic, driving
task, and so on to then use as tests. It then allows the user to specify which data is needed for
evaluation and what criteria decide success or failure. The authors give an example application of
the tool where a vehicle assists the driver in navigating a narrow road. These tests were run with
slightly varied parameters and the vehicle failed half of them. However, the biggest drawback
here has been that the base test needed to be specified manually. From the road to drive on —
which the authors first had to scan from the real world with a physical vehicle equipped with
the sensors required to do so — to the description of the scenario and how it is supposed to be
evaluated, it was a manual process. This is more labour-intensive but also has a bias on behalf
of the testers inherent to it, which could prevent faults from being discovered simply because no
one thought of the situation that would bring them about.

With the difficulties in test creation, some authors have worked on collections of tests that are
supposed to cover important aspects of certain domains. For the problem of identifying drivable
space, Fritsch et al. [64] have collected a set of images of roads together with a ground truth of the
roads seen in them. This allows developers to test their algorithms against a standardised dataset
without having to find their own reference data. They can also compare their performance in
this dataset to other approaches. This idea of defining a set of reference problems for testing and
comparison has also been applied to the domain of motion planning. CommonRoad [32] defines
both a way of specifying motion planning problems for an autonomous vehicle, but also provides
a set of problems with optimal solutions motion planning algorithms can be tested against. While
such datasets serve as a baseline for passing and comparison, they still require manual curation
of data and ground truths for a domain.

An alternative to manual creation is automatic test generation. Instead of the tester hand-
crafting tests, they are generated through some algorithm. This makes test creation more effi-
cient, of course, but in turn requires an algorithm that’s good at creating tests. Depending on

14

the scope of tests, this is far from a trivial task, especially for some of the elements relevant
to autonomous vehicles. Generating cities and their road networks, traffic, pedestrians, placing
obstacles, and so on, are hard tasks. The focus of generation methods is therefore usually more
narrow. Kendall et al. [59], for example, used random generation of road flat road strips to train
and evaluate a reinforcement learning model for autonomous driving. Their work varied road
shape, texture, and lane markings to successfully train lane keeping in their autonomous vehicles.

A more elaborate test generation method is shown by Abdessalem et al. [58]. They simulate radar
data of a pedestrian crossing the road and use that to test autonomous vehicle software. This
particular scenario also serves as an example of why N-FOT studies aren’t always applicable,
because testing a vehicle by having people walk in front of it is hardly ethical. It also addresses
two key limitations in automatic test generation: How to reduce the very large space of possible
scenarios to meaningful ones and how to deal with the high computational cost of simulations.
For the first problem, they employed search-based testing in form of a genetic algorithm that
optimises towards “interesting” test cases. “Interesting” in this context meant how close a
pedestrian is to the pedestrian detector’s warning range, how close they are to the car, and
estimated time to collision. The lower these are, the more interesting the test. To cut down
execution time they relied on surrogate testing using a machine learning model that was trained
to predict likely test outcomes and helped avoid some redundant executions and aided search.
Their results showed they were outperforming a trivial approach like random search, both in
speed and effectiveness.

Regarding the search for effective tests, Mullins et al. [60] looked into and adaptive generation
method that identifies “performance boundaries” of the vehicle and helps to filter out redundant
tests that lie within the same performance category. The task the vehicle was given was driving
from one point to another while avoiding randomly placed obstacles. These tests were executed
in simulation. A “performance boundary” in this setting was determined by examining where
small changes of the input scenario cause large changes in the vehicle’s behaviour. The intuition
was that similar behaviours of the subject need not be tested multiple times and testing should
instead focus on the inputs where behaviour is different. With this, they were able to find input
boundaries that, for example, separate tests where the vehicle’s decision-making fails to lead it
to the goal point from ones where the task is completed successfully.

As it stands, simulation testing is emerging as a field to overcome difficulties in N-FOT studies,
but is lacking in terms of test creation.

3.3 Video Game Engines as Simulators

With simulation testing, there’s the implicit need of a simulator. For the domain of driving and
the elements involved therein, the requirements for such a simulator are quite high. Depending on
the task at hand, it needs to simulate pedestrians, traffic, varying weather, time of day, provide
certain sensor data (GPS, Lidar, etc.), vehicle physics, and so on. To an extent, these are
problems the video game industry has also faced. Rich open world games like Grand Theft Auto
V (GTAV) [51] feature large cityscapes with changing weather & daytime, numerous pedestrians,
and AI-controlled vehicles in engaged in traffic.

The viability of such engines for image processing has already been established [83], but regarding
autonomous vehicles in particular, they have also served as generators for ground truth data in

15

Figure 2: Example images of the pixel-wise object annotation based on GTAV used in [85].

machine learning. Chen et al. [48] used TORCS, an open source racing simulator [84], for deep
learning with regards to lane keeping and vehicle detection. In the area of lane keeping, the
trained network was successful when used to predict steering angles and detect lanes in real life
footage. For vehicle detection, however, the model was less reliable. In line with intuition as
Nentwig et al. [83] argues, the authors attributed this to the lack of realism in how TORCS
displays cars.

Training neural nets with data from more realistic simulators has shown more promising results.
For example, the aforementioned GTAV was used in both [49] and [85] for machine learning
of object and lane recognition. To achieve this, they modified the game to provide pixel-wise
annotated frames that paint each object with a pre-defined colour which serves as the ground
truth for recognition (seen in Figure 2.) After training, both works compared their models using
the KITTI benchmark [64] and found their approach to be as reliable as prior work with real
images. Despite this success, [53] goes into some limitations of these approaches. Most notably,
the fact that GTAV was not developed as a research product and is not open source. To create
a specific scenario, the user needs to rely on third party hacks and modifications. This is a
cumbersome process with only limited possibilities, because the game is only modifiable to a
certain extent. Their work instead recreated a scene of a pedestrian crossing and a specific
vehicle crash — the fatal Tesla crash from 2016 [76] — in a more customisable engine, Unity 3D
[86]. They were able to rely on real-world map data from Mapzen [87] to recreate that scene,
which would not have been possible in GTAV without considerable effort. Similarly, [59] used
an openly available engine, Unreal Engine 4 [88] to implement their simulated test generation
discussed earlier.

Unity 3D was also used in [61] to synthesise image data of pedestrians in strange situations where
state-of-the-art object detectors are likely to fail. This was used to make up for lack of data on
rare, but important, occurrences such as a person climbing a fence that should still be recognised.
The authors were able to produce a data set that increases the accuracy of pedestrian detection
in state-of-the-art detectors.

Several projects are currently being developed that use game engines and adapt them for au-
tonomous vehicle testing. Based on Unreal Engine, there exist CARLA [50], AirSim [89], and

16

DeepDrive.io [90]. Similarly, Udacity has built a simulator for use in their autonomous vehi-
cle education programme based on Unity 3D [91]. The simulator used in this thesis is also a
variant of the video game BeamNG.drive [92] specifically tailored towards research in this area,
BeamNG.research [67].

To summarise, game engines as simulators are established for ground truth extraction [48, 49, 85],
but, because video games are usually released as entertainment products with authored content,
scenario/test creation is lacking. Early work is done to overcome this hurdle in more open engines
[53, 59, 48]

3.4 Procedural Content Generation

Creating content for video games takes a lot of work [52] and is more of a manual than an
automatic process. To make it easier, research has been conducted that tries to procedurally
create the content required for video games. This field touches on a variety of domains [93],
from generating textures for rendering to entire virtual worlds [94, 95]. Given the focus of this
thesis on road generation, this section will cover the state of the art of road generation. More
specifically, the focus is on high resolution generation of road geometry. There exist works that
produce life-like urban road networks [96, 95, 97], but the generated models are usually low
in resolution. Namely, they focus on a macroscopic generation of city networks that does not
capture details needed to evaluate lane keeping — they often don’t even differentiate between
lane and road.

A lot of the work relevant has been in the generation of tracks for racing games. In my case, a
vehicle is supposed to drive through a road network without breaking out of bounds. In a racing
game, the player is supposed to drive along a track as fast as they can. The requirement to stay
within bounds is implied by the slowdown/penalty a player would incur if they left the drivable
road. One such generation method can be seen in Loiacono et al. [57]’s work. They encoded
race tracks as a Bézier curve and used a genetic algorithm to evolve racing tracks. The genetic
algorithm used the defining points of the Bézier curve for crossovers and mutation and measured
the curvature and speed profiles of the track to evaluate fitness. The higher the diversity of
curves and attainable speeds, the more fit a track was considered. When humans were asked to
drive on these evolved tracks, they found the generated tracks to be aesthetically appealing, but
only about half of the participants actually preferred the evolved tracks to the manual control
one. This very idea was later adapted to use human preference as feedback for evolution [98].
The algorithm generated tracks that were available for download on a website which also allowed
rating the tracks. The ratings of the tracks were then used as fitness values during evolution.
This has resulted in tests that were appealing enough to be officially included in the racing game
they used — TORCS [84].

Georgiou et al. [99] used a genetic algorithm with the player of the game in the loop to refine
tracks according to the player’s skill level. The algorithm generated tracks as Bézier curves,
similar to Loiacono et al. [100], and, for each track, also computed a reference line the player
should ideally follow. The player’s performance on the track was then evaluated using this line as
a reference while they were playing. This information was combined with various data about the
player as they are playing, including information from an eye tracker that provided the system
with data on what the player is focused on. This allowed the genetic algorithm to refine tracks to

17

match a user’s skill level. This was confirmed in experiments which showed the genetic algorithm
to produce tracks that cater to players of different skill levels according to their performance in
the game.

To summarise, there exist procedural content generation methods that focus on the creation of
challenging road shapes — race tracks. These can produce content that is engaging to humans,
even focusing on their particular performance. However, they focus on producing content enter-
taining to humans, not challenging to autonomous vehicles. My work will adapt these concepts
to the domain of test generation for autonomous vehicles.

3.5 Conclusion

Simulated tests for autonomous vehicles have emerged as a common practice to avoid danger
and cost of N-FOT studies. Video game engines, thanks to dealing with similar problems a
driving simulator needs to solve, are viable simulators for such tests. Generating tests for such
simulators is then comparable to the field of procedural content generation, in which methods
to generate roads already exist. My work advances these fields by adapting procedural content
generation methods for automatic test generation for use in game engines as driving simulators.
Namely, tests will be generated to provoke the autonomous vehicle fail to stick to the lane. To
this end, they will get generated and refined using search-based methods — genetic algorithms
in particular — with the vehicle’s performance as the fitness, focusing search on tests that make
the vehicle drive poorly.

4 Method

My work focuses on fixed-width flat roads. These roads have exactly one lane on each side and
can overlap to form intersections. This is only a subset of all possible ways roads can vary, but,
as Figure reffig:examplenetworks shows, the road networks possible within these parameters can
be quite complex. To generate such networks, I first formalise representations of the individual
components road networks are made of, then devise algorithms to generate and manipulate
networks in these representations, and finally utilise a genetic algorithm to search for meaningful
tests. In this context, “meaningful” refers to tests that get the vehicle to be tested — the so-
called “ego-vehicle” — close to or fully breaking out of lane bounds. To this end, I define a
fitness function that guides the GA during search towards tests during which the ego-vehicle has
high distances from the lane centre. To produce offspring based on these tests, new operators
for crossing over and mutating tests are introduced.

Besides the goal of producing lane keeping failures in the ego-vehicle, the diversity of the test
suite is considered important. This is motivated by the intuition that confronting the ego-vehicle
with a diverse set of situations helps expose unique faults or certify correct behaviour. This
intuition is supported by prior work on steering angle prediction [18] which found the diversity
of the input set to be correlated with the amount of failures exposed. How tests/test suites can
be analysed regarding their diversity is part of my work.

18

Figure 3: A collection of road networks possible in my representation.

4.1 Approach Overview

As discussed in Section 2, genetic algorithms are an effective way to deal with optimisations in
large search spaces. In my approach, the genetic algorithm — from here on called GA — treats
tests as the individuals and test suites as the population. Crossover and mutation operators vary
the shape of the road networks tests are conducted in. Tests are considered more fit the further
away they get the ego-vehicle from the centre of the lane it is driving on. For each generation,
the GA evaluates every test’s fitness by executing it in a simulator and then randomly combines
and mutates tests to create a new generation, giving preference to more fit tests during selection.
The intuition here is that picking tests which caused the ego-vehicle further away from the lane
centre as parents for the next generation will, over time, lead to a suite that makes the vehicle
break out of the lane entirely and, past that, cause more and more such failures.

Overall, the GA follows these steps:

1. Initialise test suite with n randomly generated tests. How these are generated is defined
in Section 4.3.3.

2. Repeat until finished:

(a) Execute tests in simulator to obtain a trace of the ego-vehicle’s position while per-
forming the driving task.

(b) Use trace data to compute each test’s fitness by measuring the lane distance of the
ego-vehicle during testing.

(c) Select tests that serve as parents for the next generation using Tournament Selectio.n

19

(d) Cross over pairs of mates and possibly mutate offspring until either enough offspring
has been produced for a new suite of size n or all possible mating pairs have been
crossed over.

The above loop finishes when the GA is out of budget. The “budget” is a resource the GA uses
up during testing. One such example is time; one could allot a GA twelve hours of processing
time and evaluate how much it achieves in that time. In my thesis, I considered generations to be
the budget. Because execution in the simulator can be parallelised completely, the computation
time measured in real time can vary a lot based on hardware. Generations are a more stable
measurement, that’s why it was chosen as the budget throughout this thesis.

For the crossover and mutation step it should be noted that the operators used can produce
invalid tests. What’s considered valid and invalid is described in the formalisations. For now
it is important to note that, if crossing over and mutating all possible pairs of mates fails to
produce n valid tests for the next generation, tests from the current generation are carried over,
leading to a dynamic level of elitism.

4.2 Test Overview

To properly describe how the GA generates, crosses over, and mutates tests, a more detailed
explanation of what tests, road networks, and roads actually are in my representation is required.
The following sections serve as formal descriptions of that, laying out what tests are made of
and what constraints are imposed on them.

A test is the task of driving through a road network from a starting point to a goal point. Road
networks need to fit within a fixed boundary to make test execution finite. The target path
through this network is fixed as part of the test. This makes analysis of what a test actually
required easier, as the path to take isn’t up to the ego-vehicle’s AI and the GA can evaluate
the ego-vehicle’s performance along said path. An illustration of a test with the respective
components highlighted can be seen in Figure 4. To ensure a vehicle can actually remain within
a lane, the road networks used in testing need to have gapless drive-able space. If there was open
space along the roads, the test would essentially require the vehicle to leave the lane, making it
automatically fail in that event. Therefore, networks are defined and generated such that the
drive-able ground meets this criterion and the ego-vehicle always has a chance to reach the goal
without leaving the lane. Failure to do so is always due to the ego-vehicle.

Because tests need to be generated and transformed easily, this approach builds upon previous
work in specifying shapes of roads such as OpenStreetMap [66] and the definition of driving
tasks like CommonRoad [101]. Road networks are encoded as polylines (see Section 2 for an
overview on polylines.) In that representation, roads are specified as a series of lines and altering
them is performed by applying geometrical transformations to the underlying vertices. With
regards to defining the driving task, CommonRoad [101] provides examples on how to do so
using polylines. In that work, the authors define the task as a planning problem whose solution
is a polyline the vehicle should follow through a road network. In my representation, polylines
are similarly used to define the shape of the road, but, since there is only one goal, a test does
not require formulating a planning problem. The polyline to drive along is easily computed from
the path of the test.

20

Figure 4: An example test generated with my approach with components of the test high-
lighted.

Broadly speaking, in my approach:

� A test is a tuple T = (N,B, P), where N is a road network, B is a boundary polygon the
road network needs to fit in, and P is the path through N the ego-vehicle has to follow. It
has to be traversable without breaking outside of the lane. The start and goal points S,G
are where the the first and last segments in P cross the boundary.

� The road network N = (R1, ..., Rn) is a collection of roads that possibly overlap to form
intersections.

� A road Ri = (S1, ..., Sn) is a sequence of road segments. These segments are the building
blocks roads are constructed with. For example, a road that is straight for ten metres, then
has a left turn, followed by another straight segment of five metres, followed by a right turn
can be understood as being composed of four segments: A straight, a left turn, another
straight, and a right turn.

� A road segment S = (L1, ..., Ln) is a series of lanes. Like roads in real life, each piece of
road is split into lanes, which are further distinguished by which side of the road they’re
on. My thesis works on roads with one lane on each side, so this definition can be assumed
to always be for n = 2.

� A lane L = (l, r) is a pair of polylines that define the shape of the lane.

To summarise, a test T contains the task of driving along a path P through a road network
N , which contains roads that are composed of road segments that are made up of lanes. What
follows are formalisations of each of these components.

21

Figure 5: A simple turning lane with the vertices and edges highlighted.

4.2.1 Lanes

The most basic building block of road networks are lanes. A lane is defined as a pair of polylines.
This is similar to how CommonRoad [101] defines “lanelets.”

Definition 4.1 (D4.1). A lane L = (l, r) is a pair of polylines l = (lv1, ..., lvm) and r =
(rv1, ..., rvm).

One such lane with its polyline vertices highlighted can be seen in Figure 5. Note that the
polyline pair is required to have the same amount of vertices. Furthermore, it is required that
the polylines do not intersect and that the distance between each vertex pair (lvi, rvi) is equal
to any other pair (lvj , rvj). This ensures lanes remain the same width.

4.2.2 Road Segments

Road segments are sequences of left and right lanes. They are comparable to parts of roads in
real life like a turn or a stretch of straight road. These segments are combined to create a road.
Each segment contains a number of lanes on the left side of the road, and a number of lanes on
the right side. More formally, a road segment is defined as:

Definition 4.2 (D4.2). A road segment is a collection of lanes S = (L1, ..., Ln) with a dividing
index dS . Any Li, i < dS is a lane with direction left and any Li, i ≥ dS is a lane with direction
right.

22

Figure 6: An example road segment with five lanes, split into left and right at the fourth
lane.

One example segment with five lanes total, dividing index of four, can be seen in Figure 6. My
thesis focuses on roads with one lane on each side, but the example shows how the model can
be used beyond that. These segments are defined “right forward”, meaning the right sequence
of lanes is driven on in direction of the polyline vertices, whereas the lanes on the left are driven
on in the opposite order. An illustration of this can be seen in Figure 7. Besides the mere
sequence of lanes with a divider, there are a few properties of road segments derived from their
components. For one, a road segment’s “spine” represents the polyline dividing left lanes from
right lanes. It is used to verify intersections later, as road segments that overlap only in parts
and do not cleanly intersect at the spines are considered invalid. See Section 4.10. It can be seen
labelled as SPS in Figure 6.

Definition 4.3 (D4.3). For a road segment S = (L1, ..., Ln) with dividing index dS , the line
SPS is the segment’s spine. It is the polyline dividing left lanes from right lanes. For segments
with only left lanes, dS = n + 1, it is the right edge rn of the lane Ln = (ln, rn). For other
segments, it is the left edge ldS

of the lane LdS
= (ldS

, rdS
).

A road segment’s shape is entirely defined by combining the shape of the individual lanes that
make up the segment. The components of this shape are defined as follows:

Definition 4.4 (D4.4). The front line FS of a segment S = (L1, ..., Ln), where each lane is a
pair of polylines Li = (li, ri) with vertex count m, is the tip of each lane edge combined into one
line. It’s labelled in Figure 6 as FS . Formally, FS = (lv1,m, ..., lvn,m, rvn,m) where lvi,j , rvi,j are
the j-th vertex of the i-th lane’s left and right edge respectively.

Definition 4.5 (D4.5). The back line BS of a segment S = (L1, ..., Ln), where each lane is a
pair of polylines Li = (li, ri) with vertex count m, is the start of each lane edge combined into
one line. It’s labelled in Figure 6 as BS . Formally, BS = (lv1,1, ..., lvn,1, rvn,1) where lvi,j , rvi,j
are the j-th vertex of the i-th lane’s left and right edge respectively.

23

Figure 7: Example road segment highlighting lane direction’s relation to vertex order.

Additionally, segments have leftmost and rightmost edges, seen as LES and RES in Figure 6.

Definition 4.6 (D4.6). A road segment S = (L1, ..., Ln) has the left edge LES = l1, where l1 is
the left edge of the lane L1 = (l1, r1).

Definition 4.7 (D4.7). A road segment S = (L1, ..., Ln) has the right edge RES = rn, where
rn is the right edge of the lane Ln = (ln, rn).

Definition 4.8 (D4.8). The polygon PLS of a road segment S is constructed by joining the left
edge LES , the back line BS , the right edge RES , and the front line FS into one polygon PLS .

To fulfill the requirement of road networks having gapless, continuous roads, these road segments
have to meet several criteria for them to be easily combine-able into valid networks. They ensure
lanes within segments align and that segments align with other segments. More specifically, the
requirements are:

lane-align: Any adjacent pair of lanes is required to share a polyline. Formally, for any Li =
(li, ri), Lj = (lj , rj), i = j + 1 of a segment S = (L1, ..., Ln), it has to hold that ri = lj .

front-straight: The front of each lane must form a straight line. That is, for a segment S =
(L1 = (l1, r1), ..., Ln = (ln, rn)) it is required that the polyline FS is perfectly straight.

back-straight: Similarly, the back of each lane must form a straight line. That is, the polyline
BS must also be perfectly straight.

Road segments meeting these requirements can then be combined to form roads.

24

Figure 8: An example road showing how multiple road segments get combined into one
continuous road.

4.2.3 Roads

Further building up my testing components, roads are defined as a linear sequence of road
segments R = (S1, ..., Sn). Taking a road from the real world, for example, it can be understood
to be a straight segment of a certain length, followed by a turn of a certain angle, followed by
another turn, and so on. Each of these individually identifiable parts would be one road segment,
and the entire road the combination of them. Since my networks are required to be gapless, this
combination of segments is subject to a few restrictions, however:

back-front-align: Any adjacent pair of segments Si, Sj , i = j + 1 in a road R = (S1, ..., Sn)
must align at their respective back and front lines. Formally, FSi

= BSj
.

This requirement ensures any lane in a road segment can be driven on without interruption and
any lane can be switched to/from without interruption. An example road with the individual
segments that it is composed of highlighted can be seen in Figure 8.

Additionally, to prevent roads from intersecting with themselves, it is required that no two
segments within the same road intersect each other:

non-intersect: For segments in a road R = (S1, ..., Sn) with respective polygons (PLS1
, ..., PLSn

)
it must hold that every pair (PLSi , PLSj), i 6= j do not intersect.

Given the nature of roads, it’s easy to see how properties similar to those of road segments can
be derived: A road R = (S1, ..., Sn) has a spine SPR that is created by concatenating each
segment’s spine SPSi

, the front line FR is the front line of the frontmost segment FSn
, and so

on.

25

Figure 9: An example road network showing how networks are formed analogous to how
streets in real life intersect.

4.2.4 Road Networks

Road networks can be formed by combining multiple roads N = (R1, ..., Rn). Analogous to real
life, a network of roads can usually be decomposed into individual roads. A city might have a
“Baker Street” and a “Park Avenue” that intersect to form a network. See Figure 9 for an —
albeit contrived — illustration of this that shows two such roads intersecting.

So far, reachability has not been a relevant concept; within a single road, because they are
assumed to be gapless, every segment is reachable from the other as one merely needs to drive
up/down the lane until they reach it. With multiple roads, this is not the case. When looking
for a path through a network, reachability information is needed, however, to ensure the path
obtained is one the ego-vehicle can actually drive on without having to leave the network. For
a road network, I define a reachability graph that contains reachability information for each
segment of every road in N . Segments that share an edge in this graph are reachable without
having to leave the road network (i.e. not having to drive outside the space induced by the road
segments.) Formally:

Definition 4.9 (D4.9). For a road network N = (R1, ..., Rn) the reachability graph GN =
(VN , EN) is a directed and possibly cyclical graph. The nodes are composed of each road’s
segments:

VN =

n⋃
i=1

Ri

The list of edges is constructed by inserting one for each adjacent pair of segments in a single
road and each pair of segments from different roads that intersect, so:

EN = {(Si,j , Si,k), |j − k| = 1} ∪ {(Sp,j , Sq,k), p 6= q ∧ intersecting(Sp,j , Sq,k)}

26

Figure 10: An example road network with its reachability graph superimposed. A yellow
line between two segments means they share an edge in the reachability graph. Most edges
are from segments being adjacent in the road, but one is due to two segments intersecting.

Where Si,j refers to the j-th segment in the i-th road of N and intersecting is a predicate that
is true for two segments that are intersecting — its definition can be found in Definition D4.10.

Figure 10 shows an example network of two roads with their reachability edges laid over each
segment. Essentially, any segment adjacent in a road, or intersecting between roads are consid-
ered reachable. Finding a path from one segment to another, regardless of which road it is in,
is then equivalent to finding a path through the reachability graph. Note that this graph can
easily become cyclical as soon as one intersecting pair is reachable from another intersecting pair.
Finding a path from one segment to another, such as it is done when a path from start to goal
of a test is searched, can be achieved using any of the established search algorithms for graphs
[102].

What it means for two segments to be intersecting is intuitively clear: One segment overlaps
the other such that they form an intersection. However, segments merely overlapping is an
insufficient criterion, as segments could also partially overlap without forming a full crossing.
See Figure 11a for an example of this: Two segments overlap but only partially, causing a shape
of road that was considered invalid in this approach. To formalise this notion:

Definition 4.10 (D4.10). The predicate intersecting(Si, Sj) for two road segments Si ∈ Rp,
Sj ∈ Rq is true iff all of the following criteria are met:

� They are not members of the same road, i.e. Rp 6= Rq.

� Their spines SPSi and SPSj intersect at one point.

27

(a) Invalid partial overlap (b) Valid clean intersection

Figure 11: This figure shows an example of an invalid and valid intersection. The left one is
considered invalid because the lane only partially overlaps a lane in another road, whereas
the ones on the right cleanly intersect. Notice the difference in spine intersections: On the
left, the segment polygons overlap, but the spines don’t intersect. On the right, the segment
polygons overlap and the spines intersect at exactly one point.

� Their front lines FSi and FSj must not intersect any other segment.

� Their back lines BSi and BSj must not intersect any other segment.

This definition encapsulates the notion that two segments must “cleanly” intersect. An illus-
tration of such a clean intersection with the components used in that decision can be seen in
Figure 11b. Besides this requirement on intersections, it is also required that every road in a
network is reachable from another. The path of a test is required to contain only reachable
transitions. It would never include roads that are not reachable from the chosen starting point,
making them effectively irrelevant. To prevent this, road networks must maintain that every
road is reachable from every road:

roads-reachable: For a network N = (R1 = (S1,1, ..., S1,p), ..., Rn = (Sn,1, ..., Sn,q)) it has to
hold that for every pair of distinct roads road Ri = (Si,1, ..., Si,p), Rj = (Sj,1, ..., Sj,q) there
exists a path between every Si,k ∈ Ri and every Sj,l ∈ Rj .

4.2.5 Boundary

While the road networks, roads, and segments have to abide by certain restrictions, they could
theoretically be infinite in size. This is in theory not a problem, but in practice, executing a test
that could be infinitely big obvious drawbacks such as taking infinitely long to execute. How

28

tests are generated is also complicated by the lack of a clear end. Additionally, the amount of
space one has within a simulator is usually bounded by technical limitations. This motivates
restricting tests to some finite space that limits amount of road segments that can possibly fit
into that space and the amount of time required to drive on them. A boundary could take any
shape, but for simplicity, it was restricted to being a square in this approach. Formally:

Definition 4.11 (D4.11). A test boundary B is a finite polygon with the shape of a square.

Definition 4.12 (D4.12). For a road segment S and boundary B, the predicate inbounds(S,B)
is true iff the segment polygon PLS intersects B.

Definition 4.13 (D4.13). For a road segment S and boundary B, the predicate edgeseg(S,B)
is true iff the segment polygon PLS intersects the edge polyline of B.

An example road network with the boundary highlighted can be seen in Figure 4. With this
boundary, some additional properties must hold for road networks. Most obviously, the road
segments need to actually be within the boundary imposed on the network. A less obvious
requirement that follows for in my approach is that roads need to start and end at the boundary
edge. The reasoning behind this is mainly to specify clear criteria of where generation has to
start and end.

segs-inbounds: For a road network N = (R1, ..., Rn), the set SN of all segments in every road
Ri ∈ N , and the boundary B it must hold that ∀Si inSN : inbounds(S,B).

roads-edge: For a road network N = (R1, ..., Rn) and boundary B, it has to hold that ∀Ri =
(S1, ..., Sp) ∈ N, edgeseg(S1, B) ∧ edgeseg(Sp, B).

4.2.6 Tests

As outlined in the beginning of this section, a test is essentially the task of driving through a
network along a certain path. With all these components formalised, the definition of a test also
becomes more clear:

Definition 4.14 (D4.14). A test T = (N,B, P) is a tuple combining a road network N , a
boundary polygon B, and a target path P ⊂ SN , where SN is the set of road segments contained
in the roads of N .

The path P is the sequence of road segments to be traversed from the start to the goal of the
test. It is required that each adjacent pair in this sequence is actually reachable:

path-reachable: For a path P = (S1, ..., Sp) through network N , it is required that ∀Si, Sj ∈
P, |i− j| = 1 : (Si, Sj) ∈ EN , where EN is the set of edges in N ’s reachability graph.

This concludes definition of the test representation.

29

(a) Generate back line (b) Transform back to create front
line

(c) Interpolate intermediate lines (d) Construct lanes from vertices

Figure 12: Here, the method with which road segments are generated is shown. Segments
are generated by first constructing the back line they’re supposed to have, applying a trans-
formation to that line to create the front line, interpolating the transition between those,
and using the result to finally construct the segment’s lanes.

4.3 Generation & Modification

It is now possible to describe how such tests are exactly generated. This follows the same pattern
as in the definitions above, “bottom-up”: Road segments are generated, they get combined to
form roads, which are combined to form networks, through which a path is found — all within
a fixed boundary.

4.3.1 Road Segment Generation

To make road segments that are valid under the constraints described above, the generation
algorithm starts by generating the back line BS of the to-be-generated segment S. This line is

30

constructed from the desired lane count, the dividing index dS , and the supposed width lanes.
The algorithm then places a vertex for each left side of a lane, and a final one for the right
one of the right most lane along a straight polyline, shown in Figure 12a. This line is then
transformed according to an affine transformation matrix to create the front line FS . Figure 12b
shows how BS is translated and rotated to create the front line for a left turn. Then, to smooth
the transition between front and back, the algorithm interpolates intermediate steps between
back and front line. The resulting lines can be seen in in Figure 12c. Finally, the vertices of each
line are used to construct polylines of the left and right edges of the desired lanes. This and the
resulting road segment are shown in Figure 12d. It is easy to see how this generation method
maintains the requirements for road segments:

lane-align: Since the edges of adjacent lanes Li, Lj , |i − j| = 1 are constructed from the same
vertices in the generated lines from BS to FS , they naturally share an edge.

back-straight: BS is generated to be straight.

front-straight: FS is generated to be straight.

This generation algorithm is parameterised through the lane width w that defines the distance
between vertices along the back line and the affine transformation matrix applied to generate
the front line. Within the scope of this thesis, w was fixed to prevent lanes of variable width, as
they would complicate lane keeping evaluation. Evaluating the impact of varying lane width is
left for future work. My generation picked transformation matrices from the following types:

1. Straight transformations, which merely move the back line forwards a certain amount of
metres to form straight stretches of road.

2. Left turns, which rotate the back line to the left by n < 0 degrees around a pivot left of
the back line pv.

3. Right turns, which rotate the back line to the right by n > 0 degrees around a pivot right
of the back line pv.

More complicated shapes can be created by combining multiple such segments. For example, an
“S”-shaped windy road can be made by combining a left and a right turn.

4.3.2 Road Generation

With the ability to generate valid road segments, and roads being a linear sequence of road
segments, road generation can be achieved by appending randomly generated road segments.
Since road networks are restricted to a boundary polygon B, this method is started at a random
point BSTART along the boundary edge of B and placing a straight segment there. This segment
is rotated towards the centroid of the boundary polygon to ensure generation is headed into, not
out of, B. Figure 13a shows the initial state of generation, having placed a straight segment at
a random point along B’s edge. From that point on, the road is built up by appending segments
to the current end of the road, using the front line of the ending segment as the back line during
generation of the next segment. This is repeated until a segment is generated that is no longer
in bounds. Some intermediate states of this generation are illustrated in Figure 13. Contrary
to segment generation, with this algorithm, it’s less clear how the generated roads follow the
requirements expected of roads. For some, it is fairly obvious:

31

(a) Start at boundary (b) Extend with random seg.

(c) Extend with random seg. (d) Finish when out of boundary

Figure 13: These images show sample states during road generation. Roads are generated
one segment after another, but the series of images leaves out some intermediate steps for
brevity. Generation is started from a random point at the boundary. From that point, the
road gets randomly extended until the boundary is exited. If generation creates an invalid
road, the algorithm backtracks.

back-front-align: Front and back of each segment will align because a segment is generated
with the back being the front of the previous segment.

segs-inbouds: Generation starts at the edge of the boundary B pointing inwards and fin-
ishes once a segment would be out of bounds. Therefore, for all generated segments
Si, inbounds(S,B) is true.

roads-edge: Similarly, since generation starts and ends at the boundary, this property is ful-
filled.

The harder-to-meet requirement is the non-intersect property, which requires roads to not
intersect with themselves. This was first achieved by testing a road for self-intersections after
generation. If a road was found to be self-intersecting, it was discarded and generation was
attempted again. However, during preliminary study, this led to very long generation times as

32

the algorithm easily expanded a road back in on itself or into a corner. This was improved
upon by checking for self-intersections after each segment is added, and backtracking if the
recent addition caused an intersection. If no segment to append was found that does not cause
self-intersections, the algorithm backtracked further. This still left the algorithm susceptible
to generate roads into a corner that took a long time to backtrack out of. To make this less
likely, the algorithm was modified to always move towards a point BGOAL that is defined as the
diametric opposite of BSTART . Any addition to the road whose front line increased the distance
to BGOAL was discarded, lowering the likelihood of the algorithm backing up on itself.

4.3.3 Test Generation

To generate a test from a network N with boundary B, one merely needs to find a path P
through to complete the tuple T = (N,B, P). Because of the requirements a road network must
meet to be valid, there exists a path between every road segment in N . Therefore, any pair of
segments would work to select a path. In my approach, however, a path is chosen by randomly
sampling distinct pairs (SS , SG) of segments that lie on the edge of B, then sampling a random
set of paths from SS to SG, and picking the longest between them. This was done to maximise
how much of the network is actually traversed during testing. Note that, since the reachability
graph is cyclical, the amount of possible paths from SS to SG would be infinite. Instead, only
simple paths are considered, which include a segment at most once. Even so, with sufficiently
complicated networks, there’s a sort of path explosion that is mitigated by only evaluating a
randomised sample — the amount of simple paths for a graph of order n is O(n!) [102].

Once a path is found, the test can be created. This is how the test shown earlier in Figure 4 was
generated.

4.4 Genetic Algorithm

As outlined before, my genetic algorithm evolves a population of tests towards a suite to get
the vehicle to break out of the lane bounds. In the terms defined above, the GA maintains a
population of tests I = (T1, ..., Tn) that is initialised randomly. In each generation, every test
Ti ∈ I is executed in a driving simulator with an AI as the test subject. The driving behaviour
observed is used to rank the fitness of each test in the population. For fitness, the GA uses
the maximum distance to the lane centre observed during testing. This means a test’s fitness
is based on how far it got the vehicle away from the lane centre. A more formal definition of
this is given in Section 4.6.2. The GA then follows standard GA behaviour, randomly selecting
mates with preference to fit ones and producing offspring of them for the next generation. The
best test from the current generation is always copied into the next one, maintaining an elitism
of one. How tests are crossed over and mutated is elaborated, as these operations are designed
by me and are specific to this thesis.

33

(a) Pick random joint in left parent (b) Pick random joint in right par-
ent

(c) Combine first offspring (d) Combine second offspring

Figure 14: These images show how the join() operator works. Given two parent roads, a
random joint segment is chosen for each road. Parent roads are then split into sub-roads
before and after the joint and offspring is combined from the resulting four sub-roads.

4.4.1 Crossover (Join)

For crossing over tests, I define two operators. They work on different levels of the test, one on
roads and one on the entire road network. To cross over roads, I define a so-called “join” operator:
it crosses over two roads R1,i, R2,j from two networks N1 = (R1,1, ..., R1,p), N2 = (R2,1, ..., R2,q)
by picking two random joint segments S1 ∈ R1,i, S2 ∈ R2,j , splitting R1,i and R2,j at the
respective joints. This results in “sub-roads” of each road that contain the segments before and
after the joint. It then combines these four sub-roads such that no two come from the same road.
An illustration of this operation can be seen in Figure 14. More formally, the join operator is
defined as:

Definition 4.15 (D4.15). The join(A,B) operator for two roads A = (SA,1, ..., SA,p) and B =
(SB,1, ..., SB,q) produces two offspring roads A′ and B′ with the following algorithm:

1. Pick random SA,i ∈ A, i < p

34

2. Pick random SB,j ∈ B, j < q

3. Split A into Apre = (SA,1, ..., SA,i), Apost = (SA,i+1, ..., SA,p)

4. Split B into Bpre = (SB,1, ..., SB,j), Bpost = (SB,j+1, ..., SB,q)

5. Produce A′ = Apre ∪Bpost

6. Produce B′ = Bpre ∪Apost

To apply this operator to networks, not just single roads, random roads are picked from the
networks NA and NB to join, with the unused roads carried over into A′ and B′ untouched.

A very important aspect of this, whose precise definition is omitted for brevity, is that the
segment geometry needs to be re-translated for both Apost and Bpost as they get attached to
Bpre and Apre respectively. This is where my approach reaps the benefits of polylines. As
described in the sections defining roads and road networks (Section 4.2.3 and Section 4.2.4),
certain requirements must be met to be considered a valid road network. The join operator,
however, can easily produce invalid offspring: The resulting roads could self-intersect, partially
overlap with another road in the network, not reach the boundary, and so on. If this happens,
the operation is considered failed and the offspring will not be added to the next generation.
Upon failure, operations are retried with a probability of giving up that increases per failure.

4.4.2 Crossover (Merge)

The second operator for crossovers works on road networks as a whole. It takes a random subset
of roads from each parent network, produces two new networks by merging the selected roads
into one and the leftover roads into another network. An example of the merge operation is
illustrated in Figure 15. More specifically:

Definition 4.16 (D4.16). The merge(A,B) operator for two networks A = (RA,1, ..., RA,p), B =
(RB,1, ..., RB,q) produces two offspring networks A′ and B′ using the following algorithm:

1. Sample randomised subset Apick ⊆ A

2. Define Aleft = A \Apick

3. Sample randomised subset Bpick ⊆ B

4. Define Bleft = B \Bpick

5. Produce A′ = Apick ∪Bpick

6. Produce B′ = Aleft ∪Bleft

Note that, if Apick = A and/or Bpick = B, B′ can end up being merely Aleft, Bleft or even
completely empty. This can easily happen if A and/or B contain only one road, for example.
Empty networks are considered invalid.

Like join(), this operator can end up producing invalid results. Networks in which not every road
is reachable from another, partial overlaps, and so on. The same applies here: Invalid offspring
is not carried over into the next generation and the GA re-attempts application of the operator
with a probability to give up that increases per failure.

35

(a) Pick random roads from left
parent, A here

(b) Pick random roads from right
parent, D & E here

(c) Combine first offspring (d) Combine second offspring

Figure 15: This series of images shows the merge() operator being applied. It takes random
subsets of the parent road networks and merges the chosen and leftover roads into two
offspring networks.

4.4.3 Mutation (Segment replacement)

Mutation is done by picking a random segment S, creating a random replacement segment S′,
and replacing it in the target network. See Figure 16 for an example.

Definition 4.17 (D4.17). The mutate(N) operator for a network N = (R1, ..., Rn) works as
follows:

1. Pick random Si,j ∈ Ri, Ri ∈ N

2. Generate random replacement S′
i,j segment

3. Replace Si,j ∈ Ri with S′
i,j to create R′

i

4. Replace Ri ∈ N with R′
i to create N ′

36

(a) Pick random segment (b) Replace with another random segment

Figure 16: This figure shows an example application of the mutation operator replacing a
random segment in a road network with another random segment.

Similar to join(), this operation needs to translate geometry after Si,j to fit onto S′
i,j . If N ′ is

not valid according to my requirements, it will not be carried over into the next generation.

4.4.4 Notes on the Genetic Algorithm

The definitions above all have the potential to produce invalid offspring. However, they are
also randomised. Therefore, it is possible that an operator fails one time, but, applied again
to the same pair, succeeds. To deal with this, the GA tries an operator multiple times, with a
random chance to give up on it that increases with each failure. An alternative to this would
be exhausting every possible option in these crossovers to find a successful pair, or rule out
the existence of one, but this was not used to save computation time. The join() operator in
particular would require enumerating the Cartesian product between two roads A and B. It
would produce O(n2) new networks whilst searching for a valid one.

With regards to having multiple options for crossing over two networks: The GA is configured
with a probability of which one to pick. For example, it can be set to choose join() 30% of the
time and, in turn, merge() 70% of the time. If the chosen operation fails, the other one is not
attempted.

Once operations do succeed, the GA produces tests from the crossed over/mutated networks by
simply generating one for each network as described in Section 4.3.3. This is done until enough
offspring has been collected for the next generation. If, due to failures, too few offspring were
created, the next generation is padded with the most fit individuals of the last one to make up
for the lacking offspring.

37

Figure 17: An example vehicle trace. The green dots show each sample of the vehicle’s
position laid over the road it’s driving on. The vehicle breaking lane is clearly visible.

4.5 Test Execution

My tests are imported into a driving simulator and are then run by having an AI perform the
driving task defined as part of the test within the simulation. The simulator for this has to
accept roads in a format similar to polylines to be compatible with my approach. As output,
it needs to be able to provide the vehicle’s position in the test at a rate that makes analysis of
that meaningful. In other words, if the simulator can only provide the vehicle’s position every
few seconds, test execution might miss times the vehicle went outside the lane for less than that
time.

4.6 Metrics

Tests in my context don’t produce binary pass/fail results. Instead, they provide data about
how many times the vehicle broke out of lane bounds, its distance to the lane centre over time,
the speed it went out of bounds with, and so on. One can use this data to define binary pass/fail
criteria such as never having more than a certain amount of times the vehicle broke out of
bounds, but, during executions, my tests simply let the vehicle perform the driving task and
gather metrics about its performance. The only hard failure is the vehicle not finishing the test
in a certain time. This is to prevent a vehicle which, for whatever reason, cannot reach the goal
halting test suite evaluation by taking infinite time. In early testing, the vehicle some times
failed to start and held up other test executions by standing still. This is prevented by putting
a hard (but generous) cap on how long a test can take. Otherwise, all data is gathered from the
vehicle’s trace during the test.

4.6.1 Trace Analysis

In my work I consider the vehicle trace as the sequence of its positions during execution and use
it to compute metrics such the distance to the lane centre and judge whether it is within the
bounds of the lane. One such trace, showing the vehicle’s path along the lane and where it goes
out of bounds, can be seen in Figure 17.

38

Definition 4.18 (D4.18). A vehicle trace vT = (p1, ..., pn) is an ordered sequence of coordinate
pairs pi = (xi, yi) that captures a vehicle’s position over time during execution of a test T .

It is important to highlight that a vehicle is represented as a point here. This is, of course,
an oversimplification, as vehicles take up space. The exact bounding box of the vehicle in the
simulator was not provided, however. Test evaluation instead relied upon the position of the
centre of the ego-vehicle’s rear axle. While oversimplified, this only helps the test subject,
because it can go partially outside the lane without the test evaluation noticing. The vehicle has
to go outside the lane beyond the centre of its rear axle to count.

For each point pi, one can easily calculate the distance to the lane centre by computing their
geometric distance. To test whether a point pi is within the lane bounds, my algorithm searches
for any lane’s polygon that contains pi. More formally:

Definition 4.19 (D4.19). Let p be a point and N be a network. The predicate inlane(p,N) is
true iff there exists an L ∈ LN whose lane polygon PLL contains p. Here, LN refers to the set
of all lanes contained in all road segments of all roads in N .

This predicate is used to test if a vehicle is within lane bounds. Note that the predicate tests for
the point being in the lane polygon, not the road. Driving onto the other lane — into oncoming
traffic — is therefore also not considered to be inlane(). The actual out of bounds failure count
of a test is not the mere amount of points for which inline(p,N) is false, however. If a vehicle
breaks out of lane and stays out of lane for longer than the interval between snapshots of its
position, then the trace would end up with multiple points for what is intuitively the same failure.
Instead, the trace is analysed for sequences of points in which the vehicle was out of bounds:

Definition 4.20 (D4.20). An Out of Bounds Episode of a vehicle trace vT = (p1, ..., pn) in a
test T = (N,B, P) is a sequence of points o = (pi, ..., pj), 1 ≤ i < j ≤ n where it holds that
∀pk ∈ o : ¬inlane(pk, N).

When evaluating test results, the actual count of out of bounds failures is the amount of distinct
Out of Bounds Episodes (OBEs) found in the respective trace.

4.6.2 Lane Distance Fitness

My tests are supposed to cause as many OBEs they can. To rank a test’s ability to do that, the
OBE count itself is insufficient. The predicate inlane() is binary and does not express how close
or how far away a test is from actually causing an OBE failure. In the early stages of evolution,
where there might not even be an OBE failure found in the suite, this is of particular importance.
To know which tests are likely to cause OBE failures, the GA needs a continuous metric that
can be used to rank tests within the suite. To this end, I define a fitness function that measures
the maximum distance from the target lane to capture how close a test is to OBE failures.

Definition 4.21 (D4.21). Given a test T = (N,B, P) and a vehicle trace v = (t1, ..., tn) the
lanedist fitness is defined as:

lanedist(T, v) = max dist(vi, P), vi ∈ v

Where dist(p, P) is the shortest distance of a point p to the centre lane in path P .

39

With this metric, tests are rewarded for causing the vehicle to move away from the lane centre as
much as possible, even if no actual OBE failure is caused yet. The decision to use the maximum
lane distance over something like the average was based on the assumption that OBEs are the
exception, not the rule, and that vehicles would mostly stay in lane. Using the average lane
distance in v would therefore be liable to even out short moments the vehicle was close to an
OBEs.

4.6.3 Suite Diversity

An interesting aspect of the evolved test suites is their diversity. Population diversity expresses
how distinct individuals are from each other. The GA might produce a test suite with n OBEs
failures, but all those failures share the same cause. The suite would therefore only expose
one flaw in the vehicle. Measuring the diversity of a suite can give more insights as to how
unique individual failures might be. Additionally, besides failures, a diverse suite also serves
to verify more behaviour of the ego-vehicle, because the vehicle is given different driving tasks.
A monotonous suite would blind the tester to both possible faults, but also what the vehicle
actually gets right.

In my approach, diversity is comparable with the concept of coverage; road networks are made up
of roads which are in turn made up of road segments. How diverse a test/suite is, is synonymous
with how well it covers possible segments. The more types of segments segments are contained
within a suite, the higher the diversity, and the more shapes of roads the vehicle has to traverse.

Theoretically, the definition of segments D4.2 allows for uncountably infinite segments. This is
obviously not feasible to cover. It’s more reasonable to group segments that are similar in shape
together and cover those instead. It is, intuitively, unlikely that a turn of 30 degrees would cause
the vehicle to behave differently than a turn of 30.25 degrees, for example. The segment grouping
I chose was similar to how the generator generates road segments, where the main factors are
how far to move the front line in case of straight segments, and, in case of turns, by what angle
to turn the front line around what pivot. Grouping divided these parameters and rounded them
down to find the group a segment belonged to. For straight segments, their length was divided
by ten. For turns, the angle was divided by 15 and the offset of the turn pivot by 5. Because the
generator was limited to straight segments with a maximum length of 300 metres, turns with a
pivot offset by 1 to 50 metres, and turn angles from -120 to 120, those were the limits chosen to
make the set of possible groups actually finite.

Definition 4.22 (D4.22). The group of a road segment S is:

group(S) =

{
(br/15c, bp/5c) if type = turn

(bl/10c) if type = straight

Where type stands for the type the segment was generated as, r and p are turn angle and pivot,
and l is the length of a straight segment.

All possible groups would therefore be:

Definition 4.23 (D4.23). The set of all possible segment groups G is:

G = {(br/15c, bp/5c)|∀r ∈ [−120, 120], p ∈ [1, 50]} ∪ {(bl/10c)|∀l ∈ [1, 300]}

40

Covering all possible segments alone is a myopic metric of coverage/diversity. Road segments
aren’t driven on individually, after all. The vehicle enters a segment with the momentum it had
from the previous one. It is easy to imagine how a vehicle that accelerated while driving down a
long straight segment could enter a turn with too high a speed to stay in bounds. If the segment
preceding the turn was shorter and didn’t allow reaching high speeds, this wouldn’t happen.
Similarly, a vehicle might have oversteered in a left turn to the extent of not being able to turn
in time to make a right turn. Examples like these motivate expanding the notion of coverage to
not measure segments individually. It should at least cover all pairs of segments. This notion
is complicated by intersections, however. They mean there are two ways to reach one segment
from the other. A network could have a straight segment followed by another straight segment
within the same road, but also a straight segment intersecting with another straight segment.
All possible pairs of two segment groups is therefore:

Definition 4.24 (D4.24). The set of possible segment pairs C is defined as:

C = {(g1 → g2)|∀g1, g2 ∈ G} ∪ {(g1 ⊗ g2)|∀g1, g2 ∈ G}

Here,→ represents a regular transition from g1 to g2 within the same road and ⊗ and intersection
between them.

Extracting the set of pairs CT in a test T = (N,B, P) then requires traversing the path P
combining each pair of adjacent segments in the path depending on how they’re reached —
either along the same road or through an intersection. Finally computing the diversity of a test
and a suite is done as follows:

Definition 4.25 (D4.25). The diversity of a test T = (N,B, P) and the corresponding set of
segment pairs CT along the path P is equal to the coverage of all possible pairs :

testdiv(T) =
|CT |
|C|

Definition 4.26 (D4.26). The diversity of a test suite S = (T1, ..., Tn) with corresponding test
segment constellations (CT1

, ..., CTn
) is defined as:

suitediv(S) =

∣∣⋃
Ti∈S CTi

∣∣
|C|

In other words, a suite’s diversity is the ratio between segment pairs covered in the suite and all
possible segment pairs.

4.6.4 Auxiliary data

The vehicle trace v can be used to compute additional data about the vehicle’s performance.
This does not factor into fitness or diversity, but rather serves to supplement that data with
knowledge that could aide diagnosing a fault. It is possible to compute:

� The speed at which a vehicle goes out of bounds from the distance between points in an
Out of Bounds Episode.

41

� The segment group a vehicle goes out of bounds on by finding the segment S the point in
a trace v immediately before an Out of Bounds Episode and compute its group.

� How long a vehicle takes to recover from being out of bounds (if at all.)

For example, knowing the vehicle went out of bounds only on left turns would obviously hint at
there being a fault with its left turning behaviour. Such data is easily obtainable from the trace
a test outputs.

5 Implementation

I implement my approach as a Python 3 program that offers all generation-related functions. The
program contains the code implementing the model, generation method, and genetic algorithm
described in the Method Section 4. Additionally, it can persist tests to disk in JSON format that
encodes road networks as polylines, similar to the formalisations presented earlier. Stored tests
can then be loaded and executed at will. This allows the user to generate a test suite as described
earlier, save it, and re-run for regression testing and benchmarking. Additionally, functions to
export tests to a simulator are implemented for my simulator of choice: BeamNG.research [67].

5.1 BeamNG.research Overview

BeamNG.drive is a driving game featuring realistic soft-body physics [92] for the vehicles the
players interact with. This product has since been forked into a research-focused, freely available,
version of the game that adds functionality tailored for research. Most importantly, however, it
retains the realistic simulation of driving physics. This gave BeamNG.research an advantage over
other simulators for autonomous vehicle testing such as CARLA [50], AirSim [89], or DeepDrive.io
[90], which focus less on driving physics. These physics were given a high priority in simulator
selection as my tests evaluate lane keeping. A simulator that does not accurately reproduce the
factors like inertia acting upon a vehicle, the friction to the ground, acceleration and braking
behaviour, and so on, would exclude many aspects relevant to lane keeping. BeamNG.research
including these in its simulation made it the most appropriate simulator to my knowledge.

In addition to its physics. BeamNG.research is also highly configurable through Lua scripts.
These allow definition of the environment, layout of roads in particular, and also allow the user to
track the vehicle’s position in the environment in real time. Executing tests in BeamNG.research
was helped by these features. While the format required for roads isn’t exactly like polylines,
it’s a format one can easily convert to and from polylines. Instead of being defined through edge
polylines, one specifies a road in BeamNG.research by giving the centre polyline and the width
of the road for each vertex therein. Converting two polylines to this format only requires forming
the centre line between them by taking the centre between each vertex pair and using the distance
between these vertices as the width. This was done for every road in a network to recreate a
road network within BeamNG.research. An example can be seen in Figure 18 which shows a
test in my representation and the same test exported to BeamNG.research. During execution,
the simulator was configured to run a Lua script that retrieves the ego-vehicle’s position every
250ms.

42

(a) Sample test (b) Exported to BeamNG.research

(c) View from driver’s seat (d) Orbit view

Figure 18: These images show a test plotted with my program on the top left and the same
test exported to BeamNG.research on the top right from a bird’s eye view. Note that the
image on the top right is focused on the area near the intersection of the test, so the rest of
the test is not visible.

This simulator can also be set to run faster than real time, while retaining accurate physics.
This helps accelerate testing, because, to drive down a 30km road at 30km/h, it doesn’t actually
require one hour in real time. Rather, if the hardware allows for it, the simulation can be run
at twice the speed or more to require less time. If one assigns the simulator process its own
dedicated working directory, executions are also entirely independent and can be run in parallel.

5.2 Test Execution

Since BeamNG.research runs as its own process and is not available as a Python library, test ex-
ecution relied on interprocess communication. For every test execution, my program exports the
test into BeamNG.research’s format and saves them in the simulator’s working directory. It then
spawns a new process of the simulator and opens a communication socket. The BeamNG.research

43

process is given the test file to load and a Lua script to run. This script is part of my implemen-
tation. It connects to the socket of my Python program and allows for communication between
the two. This socket is how my program controls graceful termination of the simulator after tests
and through which it receives the vehicle trace for analysis.

6 Evaluation

The evaluation of this thesis was carried out in a series of experiments. These gathered data to
examine the proficiency of my algorithm with regards to generating suites that produce out of
bounds episodes in various settings. Experiments were split into multiple conditions that revealed
more insight into which components of my methodology contribute to the goal of generating a
good test suite for out of bounds failures. Over the course of the experiments, the generation
method was gradually expanded to incorporate more of the components and algorithms discussed
in the methodology. In short, the experiments were to examine:

� How my generation compares to a näıve method like random generation.

� How diverse generated suites are.

� How much time effective suite generation takes.

� How varying the size of the networks affects results.

� How well the generation works for different driving styles.

� How different mutation rates affect OBEs/diversity.

Overall, the experiments followed the pattern of evolving a suite of 25 tests over 50 generations,
with aspects of the generation being varied for each experimental setting. Tests were always
executed in my simulator of choice: BeamNG.research [67]. Unless stated otherwise, the ex-
periments had the GA configured to use an Elitism of at least 1 (see Section 4.1 on why this
can be higher) and a mutation rate of 50%. Boundary size was 2km× 2km. During execution,
the ego-vehicle was given a generous time limit of one second per metre of the goal path. In
other terms, it had to drive a minimum speed of 3.6km/h. This was due to occasional failures
in preliminary testing that caused the subject to stand still. Cases like this are handled by the
timeout condition; if the vehicle does not reach the goal point by the allotted time of one second
per metre to drive, it suggests something went wrong and the execution gets aborted, recording
a timeout failure.

Throughout the experiments, the dependent variables that were tracked in order to evaluate the
GA regarding the topics mentioned above were:

1. Out-of-Bounds Episode count.

2. Timeout failure rate.

3. On which type of segments the vehicle breaks out of bounds.

44

4. At what speeds the vehicle breaks out of bounds.

5. Suite diversity.

6. Generation time.

7. Test execution time.

Significance tests on this data was performed using the Mann-Whitney U test, as recommended
for randomised testing procedures by Arcuri et al. [103].

6.1 Test subject

My test subject for the evaluation was the AI BeamNG.research [67] ships with. This AI works
in two steps. The first is somewhat analogous to the work by Georgiou et al. [99], where the
authors calculate an ideal line along a race track the driver should follow as reference. Given
a start and goal to drive from and to, BeamNG.research’s AI does the same. Since there’s
no human operating the vehicle, however, it also formulates an optimisation problem around
following this line, whose solution is the acceleration/braking/and steering to use along the
track. The behaviour of this AI can be parameterised with a so-called “aggression” value. This
affects how much of the road the ideal line can use (i.e. how closely it stays within the road)
and the budget for acceleration/braking/steering. Essentially, a lower aggression value makes
the vehicle stick to the centre of the lane with more gentle acceleration/braking/steering. This
information was obtained in an informal interview with the developer, but the code for said AI
is distributed with the simulator.

There’s a difference between BeamNG.drive’s AI and a real-world autonomous vehicle AI in one
key area: It has “perfect knowledge.” This means, instead of having to infer possible driving
space from sensor data, BeamNG.research’s AI retrieves this information from the simulation.
For the evaluation, this had the downside of lowering external validity of the experiments, as
it’s impossible to tell to what extent the behaviour is representative of any autonomous vehicle
AI used in the real world. However, conversely, internal validity increases. This is because
BeamNG.research’s AI works with the same representation as the algorithms: Roads encoded as
polylines. This removes the effects of other components in, for example, an autonomous vehicle
AI based on the common approach of neural network processing [65], where drivable space is
inferred from a camera feed. In such a subject, it’s not clear if the subject couldn’t maintain its
position within the lane because it drove poorly, or because some aspect of the simulated images
we have limited control over confused it. Aspects like the width & colour of lane markers, the
lighting conditions, camera perspective, and so on, all factor into visual processing, but they
are not captured within my algorithm’s representation. Relying on a test subject which is not
affected by these helps focus the evaluation on what’s actually captured in my approach: How
the shape of the road affects driving behaviour. It’s also noteworthy that the AI, as described
above, is fairly sophisticated. Making it break lane bounds, at least for low aggression values,
is not an easy task. It also operates the vehicle using the actuators of the vehicle, i.e., the AI
pushes down on the gas pedal and rotates the steering wheel like a player/human would. It
does not rely on other functions of the simulator to move, only what the driver of the car has
available.

45

Attempts to get a autonomous vehicle AI from the real world running for simulations have proven
to be quite difficult. These AIs are usually not written to be portable, so executing them outside
their target environment is already cumbersome, let alone integrating them into any simulator.
An evaluation on a real-world autonomous vehicle AI is left for future work. At the time of
writing, this approach is being tested with the DeepDriving model presented by Chen et al. [48].
The results of that will be published at a later date.

6.2 Experiment 1: Comparison with Random

Work in this area has so far only looked at random generation of valid roads [59]. Given a way to
generate valid roads, generating them randomly is easily achieved as one merely needs to apply
the generation method randomly. In Kendall et al. [59]’s work, (valid) random generation was
enough to provide roads in simulation for reinforcement learning of lane keeping. For the purpose
of fault detection, its effectiveness has not been demonstrated yet. As such, the first experiment
looked at comparison to random generation that produces roads similar to those generated by
Kendall et al. [59].

As a baseline, I used a method slightly more sophisticated than random generation alone. Ran-
dom generation was implemented by generating 50 random populations of 25 tests, keeping only
the best one in terms of OBE count. In other words, each suite of 25 tests was evaluated for its
total OBE count and, if it exceeded the current maximum, it replaced the suite currently known
as best. This was done to give random generation a chance to grow in quality over time. The
simplest implementation of random generation would generate a suite of 25 tests once and use
that for reference. Early testing revealed this to be trivially easy to beat, however, so the bar
was raised by giving random 50 chances to improve its population.

Random generation, as described in Section 4.3.2, only returns valid roads. This is already sig-
nificantly better than pure random generation, because randomly producing points that serve as
polyline vertices would result in invalid roads most of the time. Combined with the aforemen-
tioned method of only keeping the best suites random produced, makes the random method I
use as a baseline to beat quite sophisticated.

6.2.1 Experiment design

The experiment was split into a total of four different conditions, the main difference between
them being whether roads were randomly generated, or evolved using the genetic algorithm. As
a secondary criterion, the aggressiveness of the AI was varied. The default AI aggression is 1, its
maximum is 2, and the minimum is 0.7. I varied these −0.25 and +0.25 from the norm, resulting
in a “careful” driver with aggression 0.75 and a “reckless” driver with aggression 1.25. The point
of these conditions was to see how stable results are across different driving behaviours.

All conditions were restricted to single-road networks only. This was due to generation only being
defined for single roads, but it also allows later comparing how multiple roads affect generation.
To achieve this, the GA was configured to use merge() with a probability of 0. For fitness, the
GA used lanedist() as defined in D4.21.

46

Random generation used the generation algorithm as described in Section 4.3.2. Note that this
ensured random generation led to valid tests, as opposed to completely random generation which
might produce invalid ones.

In summary, the independent variables for these experiments were:

1. Generation method (random, evolutionary)

2. AI aggression (careful, reckless)

This leads to the following conditions:

1. random, careful

2. random, reckless

3. evolved, careful

4. evolved, reckless

For each of these conditions I repeated the experiments seven timse to get an idea of how stable
results are. The dependent variables were tracked per generation, but the resulting suite after
50 generations was the focus during evaluation.

6.2.2 Hypotheses

Because the genetic algorithm is configured to prefer tests with high distance of the vehicle to
the lane centre, it is expected that, over time, the genetic algorithm produces a test population
that cause more out-of-bounds episodes than a randomly generated one. This should be true
regardless of driver aggression.

Hypothesis 1 (H1). The evolved conditions produce test suites that cause more Out-of-Bounds
Episodes than random conditions for both careful and reckless drivers.

Simulating the 3D environment and physics involved in driving is a very expensive operation,
much more so than the geometrical computations involved in road generation or evolution. It is
expected that most of the experiment time is spent in executing tests.

Hypothesis 2 (H2). More than 90% of experiment time is spent executing tests.

The genetic algorithm remixes existing tests which effectively limits suite diversity compared to
random generation, which gets the chance to include a completely fresh set of segment combina-
tions in each iteration.

Hypothesis 3 (H3). Suite diversity is lower in the evolved conditions than in random conditions.

47

(a) OBE counts (b) Diversity

Figure 19: This figure illustrates OBE counts and diversity for both random and
evolutionary conditions and each AI aggression setting. The superiority of evolutionary
generation with regards to OBE count is clearly shown. Diversity, however, is lacking in the
evolutionary settings.

6.2.3 Results

With regards to out-of-bounds episodes, the evolved, careful condition arrived at an average of
47 (SD = 6.52) OBEs, whereas random, careful had 28.43 (SD = 1.5) OBEs on average. In
the reckless settings, evolved, reckless had an average OBE count of 44.29 (SD = 10.29) and
random, reckless averaged at 25 (SD = 2.51) OBEs.

For diversity, the evolved, careful condition produced suites that had an average diversity of
0.13% (SD = 0.0002%), while the suites from random, careful had a diversity of 0.3% (SD =
0.0002) on average. On the other hand, evolved, reckless generated suites with an average
diversity of 0.14% (SD = 0.0003) and random, reckless had 0.3% (SD = 0.00015).

Each condition required an average time of 34.24 hours to complete. Of that time, 33.11 hours
were spent executing tests.

6.2.4 Discussion

The results confirmed H1, because in the careful and in the reckless settings, the evolutionary
conditions had on average more OBEs than the random ones, confirmed to be significant (p <
0.01). This difference can be seen in Figure 19a. This establishes my GA to be superior to random
generation, as it outperforms the best suite random could produce within 50 generations. From
this follows that generation in this domain requires a non-trivial approach, mine being one option.
Interestingly, the reckless conditions ended up with fewer OBE counts. This was due to the
aggression of the AI causing the car to go out of bounds further and spending more time there.
Longer out of bounds episodes resulted in fewer ones, as the AI was still approaching the goal

48

Figure 20: In this figure, an example progression of the suite diversity of both random
and evolutionary generation can be seen. As expected, random shows a steady level, while
evolutionary decays over time as the GA converges to an optimum.

whilst being off track. This effect has implications about the lanedist() fitness function that are
discussed in Section 7.1.

A look at the split between generation time and execution time also confirms H2. All conditions
spent more than 90% of the total generation time executing tests. If one wanted to speed up
generation, the simulations should therefore be the focus. With sufficient computing power,
execution could be fully parallelised, for example, which would speed up execution of the tests in
each generation by a factor of 25 (assuming a population size of 25.) This would vastly cut down
testing time, going from 34 hours to around 1.5. The kinds of simulations required for testing are
inherently expensive to compute, which motivates optimising test generation towards short, yet
effective, tests which would reduce execution time. Suite diversity turned out to be problematic
in the evolutionary conditions; H3 was confirmed with random having higher diversity rates than
evolutionary in both conditions (p < 0.01). The comparison is shown in Figure 19b. Diversity
was even stagnant in the evolutionary conditions, decreasing over the generations. This can be
observed in Figure 20. This is an expected result, because the GA prefers fit individuals during
selection and therefore converges towards what it knows to be fit. However, this is a problem, as
it can blind the suite towards faults not exposed by what’s currently considered fit, as discussed
in Section 4.6.3. It suggests repetitions of the same flaw among the high OBE count. The random
conditions did not suffer from this, as they were able to randomly enumerate possible segment
pairs.

As mentioned in Section 4.6, it’s possible to infer auxiliary data from a vehicle’s trace that does
not impact fitness, but sheds some light on where the vehicle went out of bounds. An example
of such data can be seen in Figure 21. It shows the segments an OBE was started from that
were encountered during all 50 generations, not just in the final suite. The distribution of which

49

(a) Random

(b) Evolutionary

Figure 21: This plot shows the group of road segments the ego-vehicle went out of bounds
on for both a random and evolutionary condition. Note that the segment groups here have
a lower resolution than the set in D4.23. Turns were grouped into “gentle” (radius < 45°)
and “sharp” (radius ≥ 45°), “narrow” (pivot < 25m) and “wide” (pivot ≥ 25m.) Straight
segments were grouped into “short” (length < 100m), “medium” (100m < length < 200m),
and “long” (length ≥ 300m).

50

segments the car went out of bounds on follows intuition: Sharp and narrow turns are more
often the case for OBEs than other segment groups. This chart also confirms earlier intuition
from the Diversity Section 4.6.3 that the concept of coverage/diversity needs to focus on more
than one segment; the times the vehicle went out of bounds on straight segments are due to the
vehicle barely making a turn and then failing to keep to the lane in the segment afterwards. The
actual fault happened on the turn, where the vehicle drove in such a way that made it impossible
to maintain its position afterwards, but that is not evident from looking at just the segment it
broke lane bounds on. It also shows how the GA’s distribution of OBE segments differs from
random, where the counts are more uniform. The GA, instead, remixed tests that it knew to be
effective and ended up with a more lopsided distribution. In conclusion, the GA was established
to be superior to random generation with regards to OBE counts, implying the need for more
sophisticated generation methods. For diversity, on the other hand, the GA performed worse.
Additionally, test execution time was shown to be where most of the generation time is spent.

6.3 Experiment 2: Single- versus Multi-road

Experiment 1 established a baseline of data as to how well evolving roads evokes out of bounds
failures in a test subject. Because a single road does not capture the expressive power of my
representation or the complexity of real-life road networks, this experiment examined multi- vs.
single-road networks. Intersections have played a role in autonomous vehicle incidents before
[104, 11, 105]. They also carry with them the benefit of allowing for multiple paths through the
network. This can be leveraged for efficiency by re-using one network for multiple tests that
cover different paths, but could also reveal problems in the pathing of the AI. For example, in
preliminary testing, I observed the AI turning into the wrong lane at intersections and backing
out to recover. This exposes Out of Bounds Episodes not possible with a single road. These
benefits merit their inclusion and their effect on OBE counts was evaluated in this experiment.

6.3.1 Experiment design

This design follows the format described before. The variation between driver aggression was
not performed, however, as its effect was already demonstrated in Experiment 1. This meant all
of the following conditions were run with the careful AI setting. The only independent variable
in this experiment was:

1. Single vs. multi-road (single, multi)

To enable multi-road networks, the GA was configured to apply the merge() operator 50% of the
time, join() otherwise. This made it evenly split between joining roads and merging networks.
The fitness function was the same lanedist() function used in Experiment 1. Because that
experiment already gathered data on single-road networks, this experiment only had to be run
for the multi-road settings to get comparable data. The conditions were:

1. single

2. multi

The multi condition was run five times to get more stable results.

51

6.3.2 Hypotheses

The OBE failure count of the resulting suites in the multi-road setting is expected to be higher
than in the single-road settings. This is in part due to the GA simply having more options,
but also due to how path search works. As described in Section 4.3.3, the algorithm evaluates
a random subset of paths and picks the longest one to maximise coverage. While that is not
guaranteed to be the longest possible one, it can still traverse more than the single-road settings
could, increasing the chances of encountering something the AI can’t handle.

Hypothesis 4 (H4). OBE failure counts are higher in multi, large than in single, large.

With more options of generating road networks, the GA should also produce suites with higher
diversity.

Hypothesis 5 (H4). Suite diversity is higher in multi, large than single, large.

6.3.3 Results

The single condition arrived at an average of 47 (SD = 6.52) OBEs, whereas multi had 98.2
(SD = 11.16) OBEs on average. For diversity, the single condition produced suites that had
an average diversity of 0.13% (SD = 0.0002%) and multi had an average diversity of 0.13%
(SD = 0.00022.) The data for single was taken from Experiment 1, but reported here again for
readability.

Total generation time, including test execution, was on average 11.2 hours in the multi, small
condition. The multi, large condition had an average total generation time of 20.17 hours, on
the other hand.

6.3.4 Discussion

I was able to confirm H4. The OBE counts were significantly higher in the multi condition than
in the single condition with 98.2 > 47, (p < 0.01). This difference is visualised in Figure 22a.
With regards to diversity, the multi-road condition had no significant improvement. On average,
multi-road had a diversity of 0.13%, which is insignificantly more than the 0.12% of the single-
road setting (p > 0.05.) The diversity comparison can be seen in Figure 22b. The lack of
improvement in diversity was likely due to the fact that, despite having had multiple roads
per test, these networks were composed of randomly generated single roads; merging various
single-road networks into multi-road networks would not increase diversity much. The resulting
networks are still made up of the same roads. Intersections between segments would be the main
improvement to diversity, which explains the tiny increase multi-road diversity had on average
over single-road.

In conclusion, having allowed the GA to use multiple roads more than doubled the final OBE
counts. Diversity remained unchanged.

52

(a) OBE counts (b) Diversity

Figure 22: This figure shows a comparison of OBE counts and diversity in the final suites
of single- and multi-road conditions. The superiority of multi-road tests in producing OBE
counts is clearly illustrated, while diversity only shows a small improvement for multi-road.
Note: the 1km × 1km setting was never performed for single-road networks, so there is no
data on it.

6.4 Experiment 3: Increasing diversity

Experiments 1 and 2 have shown the GA, configured for single- and multi-road, to be suffering
from low and even stagnant diversity. As fit tests emerge, the GA seemingly gets stuck in creating
tests similar to them, failing to cover many of the possible segment pairs. To prevent this, a way
of encouraging the GA to create more diverse test suites was needed. Because mates for the next
generation with higher fitness get preference during selection, the fitness function was extended
to weigh tests according to their relative uniqueness within the suite. What uniqueness means
needs to be defined first:

Definition 6.1 (D6.1). The similarity of two tests T1, T2 is defined as the Jaccard Index between
segment constellations shared and segment constellations in both tests:

similarity(T1, T2) =
|CT1

∩ CT2
|

|CT1 ∪ CT2 |

Where CT1 , CT2 are the segment constellations covered in T1 and T2.

The lower the similarity, the more unique a test is, of course. Uniqueness of a test within a suite
is derived from its similarity to the other tests:

Definition 6.2 (D6.2). The uniqueness of a test Ti in a suite S = (T1, ..., Tn) is the average of
the inverted similarity to every other test in S:

uniq(Ti, S) =

∑
Tj∈S 1− similarity(Ti, Tj)

|S| − 1

53

This function serves as a weight for the lanedist() fitness used so far. A test that makes a vehicle
move away from the lane centre by x metres, but is very similar to other tests, will have that
fitness lowered by multiplying it with its uniqueness:

Definition 6.3 (D6.3). Unique fitness of a test Ti of a suite S = (T1, ..., Tn) with execution
trace v is defined as the product between the test’s uniqueness and its lane distance fitness:

uniqlanedist(Ti, S) = uniq(Ti, S) · lanedist(Ti, v)

With this, the most fit but also unique tests are selected to produce the next generation.

6.4.1 Experiment design

To measure the impact of the uniqlanedist() fitness function on the evolution, the multi-road
conditions from Experiment 2 were repeated using the new fitness function. Given the fact that
smaller networks are traversed more quickly and the confirmation of H2 showing execution time
is the biggest factor in overall suite generation time, I wanted to look into the effect of boundary
sizes on OBE count. Depending on how effective smaller networks are in causing OBEs, they
could be a faster alternative. Therefore, in addition to the 2km × 2km boundary size used in
the experiments so far, a small = 1km× 1km condition was run. The 2km× 2km is from here
on called large. All conditions ran with the multi configuration for the GA from Experiment 2.
The main conditions therefore are:

1. lanedist, small

2. lanedist, large

3. uniqlanedist, small

4. uniqlanedist, large

6.4.2 Hypotheses

For the variation in boundary size, I expect OBE failures and suite diversity to scale with the
amount of allotted space. How much a suite can actually cover, and how many out-of-bounds-
causing segments it can contain, is limited by the space of each test. The small condition has
half the dimensions of the large condition, its OBE counts and diversity should therefore be
lower.

Hypothesis 6 (H6). OBE failures are higher in multi, large than in multi, small.

Hypothesis 7 (H7). Suite diversity is higher in multi, large than in multi, small.

Because the tests are shorter, the smaller boundary size should lead to faster executions and, by
extension, lower total generation times.

54

(a) OBE counts (b) Diversity

Figure 23: This figure shows that in both boundary configurations, running the GA with
uniqlanedist() as the fitness function changed little. Average suite diversity was higher and
OBE counts lower in the uniqlanedist conditions, but that difference was not confirmed to
be significant.

Hypothesis 8 (H8). Total generation time is lower in the multi, small than in the multi, large
condition.

With uniqlanedist() specifically rewarding uniqueness of tests, the expectation is that suite
diversity will be higher in the uniqlanedist conditions than in the lanedist conditions.

Hypothesis 9 (H9). Suite diversity will be higher in the uniqlanedist conditions than in the
lanedist conditions.

Rewarding uniqueness should also solve the issue of diversity actually stagnating over time in
the previous experiments. Meaning, not only should it be higher, but it should also not decrease
over time:

Hypothesis 10 (H10). Growth of suite diversity over the generations should be positive in the
uniqlanedist conditions.

The focus on diverse suites should reveal more flaws in the vehicle. Meaning, OOB failure counts
should be higher in the respective conditions:

Hypothesis 11 (H11). OBE counts should be higher in the uniqlanedist conditions than in
the lanedist conditions.

6.4.3 Results

The lanedist, small condition caused an OBE count of 74.2 (SD = 15.00) and uniqlanedist, small
had an average OBE count of 62.6 (SD = 6.18). For the large boundary sizes, lanedist, large

55

Figure 24: This figure shows suite OBEs per generation for both small and large sizes.
Growth shows a quick rise in OBEs for the first 15 generations and smaller increases after-
wards.

had an average OBE count of 98.2 (SD = 11.16) and uniqlanedist, large had, on average, 72.4
(SD = 9.85) OBEs.

With regards to diversity, the lanedist, small produced suites with an average diversity of 0.06%
(SD = 0.00006) and uniqlanedist, small generated suites with 0.07% (SD = 0.0002) average
diversity. In the larger settings, lanedist, large had an average diversity of 0.13% (SD = 0.00022)
In the uniqlanedist, large condition, the final suite diversity was, on average, 0.16% (SD =
0.0002).

6.4.4 Discussion

As expected, both H6 and H7 were confirmed. The difference between small and large in terms
of OBE count and diversity can be seen in Figure 22. It’s natural that, with less space, there
are fewer opportunities to make the vehicle break lane bounds due to the physical limit of how
much road the GA can place alone. However, it is noteworthy that the average OBE count
in the small condition is, despite having four times less space, only not a fourth of the large
condition’s OBE count. Rather, it’s around 3/4, since the average for small was 74.2 while the
average for large was 98.2. Diversity, on the other hand, showed a much more straighforward
relationship between boundary size and resulting diversity: Reducing the boundary size by half
also roughly halved the diversity, with small having an average diversity of 0.06% and large an
average of 0.13%. This follows the intuition of there simply being a limit as to how much the
GA can feasibly place within the boundary and coverage/diversity scaling accordingly.

The total generation time was also reduced in the small condition, only slightly more than half
of large. This also shows a more straightforward relation between boundary size and execution

56

Figure 25: Here, the lack of impact uniqlanedist() had on growth is made clear by the
respective slopes being almost parallel.

time, similar to diversity. However, given the still-high OBE count of small, this suggests small
tests to be more efficient, producing more OBEs for the allotted space. Note that the average
time even for 2km × 2km conditions was reduced from around 34 hours to 20.17. This is due
to optimisations in the generation code implemented between Experiments 1 & 2. While that
makes generation times betwen Experiment 1 & 2 incomparable, they are still comparable within
Experiment 2 and the fact that the small conditions reach 50 generations quicker than the large
ones still holds. This confirmed H8.

Looking at how OBE counts grow over the 50 generations shows that, in both the small and
large settings, the OBE counts grow very quickly over the first 15 generations and then plateau
and show much smaller increases. This pattern can be seen in Figure 24. Since road networks
are constrained to a boundary polygon, this pattern suggests that the GA is quick expand roads
until it hits the physical limit of how many roads can fit within the boundary space and, from
then on, mainly refines those tests for higher OBEs. Depending on the requirements, the testers
might therefore reach effective test suites with around a third of the test budget I used.

The results above did not confirm H9. While the average diversity values for the uniqlanedist
conditions were slightly higher, this difference was not determined to be significant (p > 0.05).
This can be seen in Figure 23b. As such, it was not possible to conclude uniqlanedist to lead
to higher suite diversity. A likely explanation for this is how large the set C is and how little
variation of diversity values is actually possible within the boundary (see Experiment 2 to get
an idea.) This can easily lead to the tiny difference in uniqueness of a test being out-balanced
by a larger change in the distance the vehicle went out of lane. Essentially, the set C used to
measure uniqueness is of such a high resolution that variations between tests become small to
the point of irrelevance. Future work can gather more data to reliably conclude whether H9 is
true or not.

57

It was also not observed that diversity over generations grows positively in the uniqlanedist()
conditions. See Figure 25 for the diversity progression of an example run. Therefore, H10 was
also not confirmed, likely for the same reason as H9.

For OBE counts, the average results for uniqlanedist() were lower than for lanedist(), but this
difference was not statistically significant (p > 0.05). The goal of eliminating repeats inherently
reduces the total OBE count, which would explain the lower final results, but with no significance
to the difference, there’s not much more that can be inferred.

To conclude: Factoring in the uniqueness of a test did, while increasing the average diversity
slightly, not introduce significant change from Experiment 2. Varying boundary size, however,
has revealed that smaller tests can reach disproportionately many OBEs.

6.5 Experiment 4: Mutations

Another attempt at increasing diversity was done by increasing the mutation rate of the GA. The
prior experiments all ran with a mutation probability of 50%; for half the produced offspring,
the GA attempted a random mutation as described in Section 4.4.3. In this experiment, the
probability was changed to 100%. This was done with the expectation of improving upon the
ineffective uniqlanedist() by raising the impact of a completely random element of the GA on
the suites. This was motivated by the random generation having had the highest diversity so
far.

6.5.1 Experiment design

With the impact of boundary sizes sufficiently demonstrated, this experiment was only run
with the large boundary sizes from the previous experiments. As reference for comparison, the
lanedist condition from Experiment 2 was used, as Experiment 3 did not improve upon it in a
noteworthy way. The goal remains the same from Experiment 3: improving suite diversity in
comparison to a GA using lanedist(). In Experiment 3, lanedist ran with a mutation rate of
half = 50%, while a new condition ran with all = 100%. This condition also used uniqlanedist()
to give preference to more unique tests. This was the only independent variable of the experiment.
The conditions were therefore:

1. lanedist, half

2. uniqlanedist, all

These were run five times for more stable results.

6.5.2 Hypotheses

Increasing randomness during generation should also increase diversity:

Hypothesis 12 (H12). Suite diversity will be higher in uniqlanedist, all than in lanedist, half .

With higher diversity, the suite should expose more OBEs:

Hypothesis 13 (H13). OBE count in the uniqlanedist, all condition will be higher.

58

(a) OBE counts (b) Diversity

Figure 26: In this figure, it can be seen that forcing the GA to always go for mutations did
not affect the results with regards to OBE count or diversity significantly.

6.5.3 Results

The uniqlanedist, all condition produced test suites that had 75.57 (SD = 14.20) OBEs and a
diversity of 0.0015 (SD = 0.0002) on average.

6.5.4 Discussion

With the results, was not possible to confirm that maximising the mutation rate affected final
suite diversity or OBEs. H12 and H13 therefore remain unconfirmed. Figure 26 illustrates the
data obtained. The slight differences were not statistically significant (p > 0.05). Future work
might reveal there to be significant change, as the error margins on the data hint at.

I therefore conclude the mutation rate to be an ineffective way of increasing diversity.

7 Conclusions

My work has built on current research in procedural content generation, road specification,
search-based test generation, and driving simulation to define an evolutionary method for gen-
erating test scenarios which challenge an autonomous vehicle’s lane keeping capabilities. In my
evaluation, focused on flat and gapless road networks with a lane for each direction. Despite this
focus, I was able to confirm even this basic domain requires non-trivial generation methods was
confirmed in a baseline experiment which established my approach to be superior to a method
like random generation. Future research needs to look into which methods perform better or
worse compared to the one outlined in this thesis.

59

I was able to generate test suites that effectively evoke lane keeping failures in an autonomous
vehicle AI using a generation method that reacts to the vehicle’s particular weaknesses. This
was achieved within realistic simulations that incur little cost on hardware or danger to people,
compared to N-FOT studies. The highest cost has been in time, as generation during experi-
ments took a while, but I have shown various methods of reducing that time, such as varying
boundary sizes, limiting the generational budget, and parallelising test executions. With these,
my approach is a quick and effective way to find faults within an autonomous vehicle AI. To
achieve this, I had to solve problems in the fields of procedural road generation and simulation
testing. As the field of simulation testing and automatic test generation for autonomous vehicles
evolves, my work serves as reference for solutions to problems in content generation and simula-
tion testing other works face. Finally, the expressive power of my road network model is much
larger than what I could feasibly cover in my evaluation. My work therefore lays out a healthy
basis for future work in this field.

Final suite diversity is where my approach was lacking: Diversity was lower in the evolved suites
than in the random ones. Attempts to increase it were ineffective. The low suite diversity makes
it uncertain how many of the failures are actually unique, and not caused by a fault in the
vehicle’s AI already covered by another test. I would also conclude the diversity metric used to
be insufficient. The highest diversity observed were around 0.3%, which was the combination
of 25 2km × 2km networks. This is due to the set of possible segment pairs C being fairly big.
On its own, this is not a problem, but when using coverage of that set as a weight, it means
in-/exclusion of a few new segment pairs has a very small effect on the overall weight of a test.
Combined with a fitness function like lanedist(), this means a small change in weight was easily
compensated for by tests that cause higher lane distances. This suggests lowering the resolution
of segment grouping to have fewer pairs in C and normalising lane distance to be in the same
range as the weight: [0, 1]. For lanedist(), this could be done by defining 0 as being on the lane
centre, 1 as being out of bounds, and any distance inbetween to (0, 1). Future work should look
into the impact of this.

Like with other simulation-based approaches, one of the biggest problems has been the execution
time of tests. Running a single condition of an experiment took almost two days per run, with
more than 90% spent executing tests in the simulator. This is despite the simulator being
configured to run faster than real time. Experiments were run on a consumer PC (3.10 Ghz
i7-4770S Quad Core, 16 GiB RAM, GeForce GTX 970) that was more than powerful enough
to handle four instances of the simulator at the same time. Yet, experiments took so long
that gathering a significant amount of samples became unfeasible (at 34h, n = 30 would have
required almost one and a half months.) However, test execution can also be fully parallelised.
With sufficient computing power, it can be reduced by almost a factor of n, where n is the
population size of the GA. Besides accelerating actual executions, it could also be possible to
intelligently eliminate unnecessary executions or employ surrogate testing to reduce generation
time.

It’s noteworthy that the OBE failure rate, while increasing steadily during evolution, also varies
a lot from generation to generation. This is due to some actually fit tests not being carried over
into the next generation, either because the randomised tournament selection didn’t settle on
them, or the randomised operations done on them ended up creating tests that were worse. One
way to alleviate this is increasing the elitism of the GA, which would make sure a certain amount
of good tests always get taken into the next generation. Another way is to switch the GA from
a generational model, where the population is replaced by the evolved one in each generation,

60

to a “steady state” one, that maintains a population of the n most fit individuals. With that
setting, offspring is inserted into the same population, evaluated for fitness, and then only the
best n are kept. This would make sure any offspring that’s worse is not kept. Future work should
examine how that affects final OBE counts. These methods would negatively impact diversity, as
the GA would focus on what it considers fit even quicker. However, this might be addressed by
employing a multi-objective search such as NSGA-II [106] that maximises for both OBE counts
and diversity.

7.1 Limitations

This method has so far been only evaluated on a perfect knowledge AI, which does not represent
autonomous vehicle AIs used in the industry [65]. As discussed, this increases internal validity
but is a significant hit to external validity. While the proposed approach treats the subject as a
black box and is applicable to any test subject whose lane keeping behaviour needs to be tested,
this still casts doubt on the merits of this approach to autonomous vehicle AIs from the industry.
Lack of availability and portability is one reason no actual autonomous vehicle AI was considered
during evaluation, but the other reason hints at another limitation of this approach: Adapting
an AI to be used with the simulator was met with extreme difficulty, which needs to be overcome
before testing like this can be applied to autonomous vehicle software.

As hinted in the evaluation, the visual components — besides its shape, of course — are not part
of the representation. This blinds the approach from faults caused by varying visual aspects in
AIs whose lane-keeping behaviour is determined by visual processing. What the lane boundaries
look like, the texture of the road, time of day and corresponding environmental brightness, and
so on, are important when a vehicle processes a camera feed to identify drive-able space, but
is not captured in my representation. Works like [59] include these specifically to also test the
image processing algorithm’s lane recognition.

Requiring the vehicle to follow a fixed path through a network also has its limitations. The
requirement was in service of analysis: One path makes it clear how far away the vehicle is from
following it and what the driving task actually requires from the vehicle (i.e. coverage.) However,
this limits the possible subjects to vehicles who can be given a path to follow, as opposed to
merely a goal point to reach, and prevents testing path search of the vehicle itself. This could
even affect lane-keeping behaviour: A vehicle AI could be programmed to avoid paths with turns
it knows it’s unlikely to successfully navigate and choose paths accordingly. This would in turn
lower the OBE failure rate. Future work should look into only defining a start and goal point
for the ego-vehicle and analyse the path it chose, instead.

The low sample count for experiments is a threat to validity. While I was still able to obtain
low p-values for most comparisons, the result of Experiment 2 in particular suffer from lack of
data. This experiment was concluded unsuccessful, as significant increase in diversity was not
observed. As Figure 23b shows, the average diversity in the suites generated with uniqlanedist()
was higher, but the margin for error fairly large, making conclusions unreliable. If more data
was gathered, this might change to confirm or confidently rule out uniqlanedist() as a way of
increasing diversity.

61

8 Future Work

While the model and algorithms I defined in my work are powerful, they do not capture the
complexity of real-world road networks and therefore can never cover all of the situations an
autonomous vehicle AI will face. Futhermore, my evaluation also examined only a subset of my
model’s the expressive power. Future work should look into both expanding my approach to
allow for more complex situations, but also extend evaluation towards other areas of the model
I defined or changes that the evaluation suggested.

8.1 Different Diversity Metric

As the Conclusion Section 7 discussed, the diversity metric used was shown to be flawed. Besides
the size of the set of possible pairs of segments C, future work should also look into a diversity
metric that is more suitable for intersections. In my work, an intersection counts as one way to
combine segments. Intuitively, however, there’s a difference between an intersection that crosses
at the apex of a turn and an intersection that crosses a turn at the start or end of it, when
the shape of the road is more straight. As it stands, my concept of diversity does not address
this. The increase in OBE rates observed after intersections were introduced in Experiment 2
motivates a diversity metric that is more tailored towards intersections, as they have shown to
be the cause of many OBEs and, without a meaningful concept of diversity, it’s uncertain how
unique these are.

8.2 Varying Height

My road networks are fully flat. All formalisations given in Section 4 rely on two-dimensional
coordinates. These definitions could be extended to include a z-coordinate to express height.
Road segments could then transition from, for example, a height of 1 metre to 3 metres. With
regards to lane keeping, this might expose new faults, such as the vehicle miscalculating the ac-
celeration needed to overcome a slope, underestimating the increased speed from going downhill,
or even driving too quickly up a slope and losing traction from an accidental jump. However,
this change would require some new constraints. With the option to ascend off ground, roads
could also start overlapping without actually intersecting — similar to a bridge crossing over
another road. These would not be intersections and would have to impose a required minimum
height that still allows the vehicle to pass under the bridge for the test to be solvable.

8.3 Varying Lane Width

Roads in the real world can vary in width, but my evaluation worked on lanes that all had the
same width. If the road segment generation algorithm and the GA were altered to allow for
variations in lane width, faults specific to the ego-vehicle being unable to cope with such changes
could be exposed. For example, Schuldt et al. [42] focused their evaluation on a scenario where
the ego-vehicle had to navigate a road that got more narrow due to a construction site blocking
parts of it. Failures in such a setting are not detected by my algorithm as it is and future work
could look into expanding it to cover them.

62

8.4 Multiple Lanes

The model I described is built to support multiple lanes. My evaluation focused on the case of
one lane on each side. Future work could examine how my approach scales to multiple lanes.
This would require altering the definition of the vehicle trace to not just focus on one lane, but
measure the ego-vehicle’s distance to the lane centre of the lane it is currently driving on. In
turn, it would allow for a new manoeuvre and source of failure: lane switching. With multiple
lanes, the ego-vehicle is given the option to switch lanes as it sees fit. This opens it up to failure
during that and might increase OBE counts.

8.5 Obstacles on the Road

Having multiple lanes would also open up the possibility of adding obstacles such as other vehicles
to the lanes. With a single lane, this is not really possible, as avoiding said obstacle would force
the vehicle to leave the lane and thus force it to fail. With multiple lanes, the networks could
place obstacles in a way that forces a lane switching maneuvre and possibly reveal failure to
detect the obstacle at all or failures during lane switching. However, test generation would need
to ensure obstacles are not placed in a way that makes them impossible to avoid, as multiple
obstacles placed next to each other on multiple lanes can end up blocking any way ahead for the
ego-vehicle.

8.6 Let Ego-Vehicle Pick a Path

My current representation forces the vehicle down a path that is fixed for each test. This could
be changed to merely give the vehicle a goal position to drive to and let it perform its own
path search. This would allow evaluating how well the vehicle’s pathing algorithm deals with
complicated situations. The evaluation of the vehicle trace would need to be adapted to account
for this, however. It could no longer measure the distance to the lane centre along the target
path. Instead, the path the ego-vehicle took throughout the network would have to be inferred
from its positions and which segments it drove on and the distance to the lane centres calculated
based on those.

63

References

[1] P. Bansal and K. M. Kockelman, “Forecasting Americans’ long-term adoption
of connected and autonomous vehicle technologies,” Transportation Research Part
A: Policy and Practice, vol. 95, pp. 49–63, Jan. 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0965856415300628

[2] SAE International, “Taxonomy and Definitions for Terms Related to On-Road Motor Ve-
hicle Automated Driving Systems.”

[3] Waymo, “Waymo.” [Online]. Available: https://waymo.com/

[4] “Autopilot.” [Online]. Available: https://www.tesla.com/autopilot

[5] UberATG, “Self-driving cars return to Pittsburgh roads in manual
mode,” Jul. 2018. [Online]. Available: https://medium.com/@UberATG/
self-driving-cars-return-to-pittsburgh-roads-in-manual-mode-f83e506a04b9

[6] J. M. Gitlin, “Volvo’s autonomous Drive Me research project gets un-
derway,” Jan. 2017. [Online]. Available: https://arstechnica.com/cars/2017/01/
volvos-autonomous-drive-me-research-project-gets-underway/

[7] F. Lambert, “A new Tesla Autopilot update is ‘in final testing phase’,
says Elon Musk,” Feb. 2018. [Online]. Available: https://electrek.co/2018/02/02/
tesla-autopilot-new-update-elon-musk/

[8] M. Bertoncello and D. Wee, “Ten ways autonomous driving could re-
define the automotive world | McKinsey & Company.” [Online]. Avail-
able: http://www.mckinsey.com/industries/automotive-and-assembly/our-insights/
ten-ways-autonomous-driving-could-redefine-the-automotive-world

[9] “Autonomous Vehicle Disengagement Reports 2017.” [Online]. Available: https:
//www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/disengagement report 2017

[10] N. Zhou, “Volvo admits its self-driving cars are confused by kangaroos,” The Guardian,
Jul. 2017. [Online]. Available: http://www.theguardian.com/technology/2017/jul/01/
volvo-admits-its-self-driving-cars-are-confused-by-kangaroos

[11] A. Davies, “Google’s Self-Driving Car Caused Its First Crash,”
Wired, Feb. 2016. [Online]. Available: https://www.wired.com/2016/02/
googles-self-driving-car-may-caused-first-crash/

[12] M. Wehner, “Video shows Tesla Model S slamming into a wall while driving on Autopilot,”
Mar. 2017. [Online]. Available: https://bgr.com/2017/03/02/tesla-crash-video-texas/

[13] O. Solon, “Tesla that crashed into police car was in ’autopilot’ mode, California official
says,” The Guardian, May 2018. [Online]. Available: http://www.theguardian.com/
technology/2018/may/29/tesla-crash-autopilot-california-police-car

[14] E. Shilling, “Video Appears To Show Tesla Autopilot Veering Toward Di-
vider At Site Of Deadly Crash.” [Online]. Available: https://jalopnik.com/
video-appears-to-show-tesla-autopilot-veering-toward-di-1825016336

64

http://www.sciencedirect.com/science/article/pii/S0965856415300628
https://waymo.com/
https://www.tesla.com/autopilot
https://medium.com/@UberATG/self-driving-cars-return-to-pittsburgh-roads-in-manual-mode-f83e506a04b9
https://medium.com/@UberATG/self-driving-cars-return-to-pittsburgh-roads-in-manual-mode-f83e506a04b9
https://arstechnica.com/cars/2017/01/volvos-autonomous-drive-me-research-project-gets-underway/
https://arstechnica.com/cars/2017/01/volvos-autonomous-drive-me-research-project-gets-underway/
https://electrek.co/2018/02/02/tesla-autopilot-new-update-elon-musk/
https://electrek.co/2018/02/02/tesla-autopilot-new-update-elon-musk/
http://www.mckinsey.com/industries/automotive-and-assembly/our-insights/ten-ways-autonomous-driving-could-redefine-the-automotive-world
http://www.mckinsey.com/industries/automotive-and-assembly/our-insights/ten-ways-autonomous-driving-could-redefine-the-automotive-world
https://www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/disengagement_report_2017
https://www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/disengagement_report_2017
http://www.theguardian.com/technology/2017/jul/01/volvo-admits-its-self-driving-cars-are-confused-by-kangaroos
http://www.theguardian.com/technology/2017/jul/01/volvo-admits-its-self-driving-cars-are-confused-by-kangaroos
https://www.wired.com/2016/02/googles-self-driving-car-may-caused-first-crash/
https://www.wired.com/2016/02/googles-self-driving-car-may-caused-first-crash/
https://bgr.com/2017/03/02/tesla-crash-video-texas/
http://www.theguardian.com/technology/2018/may/29/tesla-crash-autopilot-california-police-car
http://www.theguardian.com/technology/2018/may/29/tesla-crash-autopilot-california-police-car
https://jalopnik.com/video-appears-to-show-tesla-autopilot-veering-toward-di-1825016336
https://jalopnik.com/video-appears-to-show-tesla-autopilot-veering-toward-di-1825016336

[15] CNBC, “Uber fatal crash: Self-driving SUV saw pedestrian, didn’t brake:
feds,” May 2018. [Online]. Available: https://www.cnbc.com/2018/05/24/
ubers-self-driving-suv-saw-the-pedestrian-in-fatal-accident-but-didnt-brake-officials-say.
html

[16] S. Levin, “Tesla fatal crash: ’autopilot’ mode sped up car before driver killed, report
finds,” The Guardian, Jun. 2018. [Online]. Available: http://www.theguardian.com/
technology/2018/jun/07/tesla-fatal-crash-silicon-valley-autopilot-mode-report

[17] Y. Tian, K. Pei, S. Jana, and B. Ray, “DeepTest: Automated testing of deep-neural-
network-driven autonomous cars,” arXiv preprint arXiv:1708.08559, 2017.

[18] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “DeepRoad: GAN-based
Metamorphic Autonomous Driving System Testing,” arXiv:1802.02295 [cs], Feb. 2018,
arXiv: 1802.02295. [Online]. Available: http://arxiv.org/abs/1802.02295

[19] L. Li, W. L. Huang, Y. Liu, N. N. Zheng, and F. Y. Wang, “Intelligence Testing for Au-
tonomous Vehicles: A New Approach,” IEEE Transactions on Intelligent Vehicles, vol. 1,
no. 2, pp. 158–166, Jun. 2016, alessio.

[20] S. Khastgir, S. Birrell, G. Dhadyalla, and P. Jennings, “Identifying a gap in existing vali-
dation methodologies for intelligent automotive systems: Introducing the 3xd simulator,”
in 2015 IEEE Intelligent Vehicles Symposium (IV), Jun. 2015, pp. 648–653, alessio.

[21] P. Koopman and M. Wagner, “Challenges in Autonomous Vehicle Testing and Validation,”
SAE Int. J. Trans. Safety, vol. 4, no. 1, pp. 15–24, Apr. 2016, alessio. [Online]. Available:
http://papers.sae.org/2016-01-0128/

[22] M. Mauritz, F. Howar, and A. Rausch, “Assuring the Safety of Advanced
Driver Assistance Systems Through a Combination of Simulation and Runtime
Monitoring,” in Leveraging Applications of Formal Methods, Verification and Validation:
Discussion, Dissemination, Applications, ser. Lecture Notes in Computer Science.
Springer, Cham, Oct. 2016, pp. 672–687, alessio Marc. [Online]. Available: https:
//link.springer.com/chapter/10.1007/978-3-319-47169-3 52

[23] C. Sippl, F. Bock, D. Wittmann, H. Altinger, and R. German, “From Simulation Data to
Test Cases for Fully Automated Driving and ADAS,” in Testing Software and Systems,
ser. Lecture Notes in Computer Science. Springer, Cham, Oct. 2016, pp. 191–206, alessio.
[Online]. Available: https://link.springer.com/chapter/10.1007/978-3-319-47443-4 12

[24] M. Aeberhard, S. Rauch, M. Bahram, G. Tanzmeister, J. Thomas, Y. Pilat, F. Homm,
W. Huber, and N. Kaempchen, “Experience, Results and Lessons Learned from Auto-
mated Driving on Germany’s Highways,” IEEE Intelligent Transportation Systems Maga-
zine, vol. 7, no. 1, pp. 42–57, 2015.

[25] E. Royer, F. Marmoiton, S. Alizon, D. Ramadasan, M. Slade, A. Nizard, M. Dhome,
B. Thuilot, and F. Bonjean, “Lessons learned after more than 1000 km in an autonomous
shuttle guided by vision,” in 2016 IEEE 19th International Conference on Intelligent Trans-
portation Systems (ITSC), Nov. 2016, pp. 2248–2253.

[26] M. Bertozzi, A. Broggi, A. Coati, and R. I. Fedriga, “A 13,000 km Intercontinental Trip
with Driverless Vehicles: The VIAC Experiment,” IEEE Intelligent Transportation Systems
Magazine, vol. 5, no. 1, pp. 28–41, 2013.

65

https://www.cnbc.com/2018/05/24/ubers-self-driving-suv-saw-the-pedestrian-in-fatal-accident-but-didnt-brake-officials-say.html
https://www.cnbc.com/2018/05/24/ubers-self-driving-suv-saw-the-pedestrian-in-fatal-accident-but-didnt-brake-officials-say.html
https://www.cnbc.com/2018/05/24/ubers-self-driving-suv-saw-the-pedestrian-in-fatal-accident-but-didnt-brake-officials-say.html
http://www.theguardian.com/technology/2018/jun/07/tesla-fatal-crash-silicon-valley-autopilot-mode-report
http://www.theguardian.com/technology/2018/jun/07/tesla-fatal-crash-silicon-valley-autopilot-mode-report
http://arxiv.org/abs/1802.02295
http://papers.sae.org/2016-01-0128/
https://link.springer.com/chapter/10.1007/978-3-319-47169-3_52
https://link.springer.com/chapter/10.1007/978-3-319-47169-3_52
https://link.springer.com/chapter/10.1007/978-3-319-47443-4_12

[27] N. Kalra and S. M. Paddock, “Driving to safety: How many miles of driving would
it take to demonstrate autonomous vehicle reliability?” Transportation Research Part
A: Policy and Practice, vol. 94, pp. 182–193, Dec. 2016, alessio. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0965856416302129

[28] S. Masuda, “Software Testing Design Techniques Used in Automated Vehicle Simulations,”
in 2017 IEEE International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), Mar. 2017, pp. 300–303, alessio.

[29] D. Gruyer, S. Glaser, B. Vanholme, and B. Monnier, “Simulation of automatic vehicle
speed control by transponder-equipped infrastructure.” IEEE, Oct. 2009, pp. 628–633.
[Online]. Available: http://ieeexplore.ieee.org/document/5399281/

[30] P. Minnerup and A. Knoll, “Testing Automated Vehicles Against Actuator Inaccuracies in
a Large State Space,” IFAC-PapersOnLine, vol. 49, no. 15, pp. 38–43, Jan. 2016. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S2405896316308825

[31] J.-H. Park and Y.-W. Tai, “A simulation based method for vehicle motion prediction,”
Computer Vision and Image Understanding, vol. 136, pp. 79–91, Jul. 2015. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S1077314215000508

[32] M. Althoff, M. Koschi, and S. Manzinger, “CommonRoad: Composable benchmarks for
motion planning on roads,” in 2017 IEEE Intelligent Vehicles Symposium (IV), Jun. 2017,
pp. 719–726, alessio.

[33] R. Molenaar, A. v. Bilsen, R. v. d. Made, and R. d. Vries, “Full spectrum camera sim-
ulation for reliable virtual development and validation of ADAS and automated driving
applications,” in 2015 IEEE Intelligent Vehicles Symposium (IV), Jun. 2015, pp. 47–52.

[34] M. Nentwig and M. Stamminger, “Hardware-in-the-loop testing of computer vision based
driver assistance systems,” in 2011 IEEE Intelligent Vehicles Symposium (IV), Jun. 2011,
pp. 339–344, alessio.

[35] D. Hospach, S. Mueller, O. Bringmann, J. Gerlach, and W. Rosenstiel, “Simulation and
evaluation of sensor characteristics in vision based advanced driver assistance systems,” in
17th International IEEE Conference on Intelligent Transportation Systems (ITSC), Oct.
2014, pp. 2610–2615.

[36] M. R. Zofka, R. Kohlhaas, T. Schamm, and J. M. Zöllner, “Semivirtual simulations for the
evaluation of vision-based ADAS,” in 2014 IEEE Intelligent Vehicles Symposium Proceed-
ings, Jun. 2014, pp. 121–126, alessio.

[37] J. V. Casas, A. Torday, and A. Gerodimos, “Combining Mesoscopic and Microscopic Simu-
lation in an Integrated Environment as a Hybrid Solution,” IEEE Intelligent Transportation
Systems Magazine, vol. 2, no. 3, pp. 25–33, 2010.

[38] C. Berger, M. Chaudron, R. Heldal, O. Landsiedel, and E. M. Schiller, “Model-based,
composable simulation for the development of autonomous miniature vehicles,” in
Proceedings of the Symposium on Theory of Modeling & Simulation-DEVS Integrative
M&S Symposium. Society for Computer Simulation International, 2013, p. 17, alessio.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2499651

66

http://www.sciencedirect.com/science/article/pii/S0965856416302129
http://ieeexplore.ieee.org/document/5399281/
http://www.sciencedirect.com/science/article/pii/S2405896316308825
http://www.sciencedirect.com/science/article/pii/S1077314215000508
http://dl.acm.org/citation.cfm?id=2499651

[39] G. Bagschik, T. Menzel, and M. Maurer, “Ontology based Scene Creation for the
Development of Automated Vehicles,” arXiv:1704.01006 [cs], Mar. 2017, alessio. [Online].
Available: http://arxiv.org/abs/1704.01006

[40] D. Gruyer, O. Orfila, V. Judalet, S. Pechberti, B. Lusetti, and S. Glaser, “Proposal of a
virtual and immersive 3d architecture dedicated for prototyping, test and evaluation of
eco-driving applications,” in 2013 IEEE Intelligent Vehicles Symposium (IV), Jun. 2013,
pp. 511–518, alessio.

[41] C. Zhang, Y. Liu, D. Zhao, and Y. Su, “RoadView: A traffic scene simulator for au-
tonomous vehicle simulation testing,” in 17th International IEEE Conference on Intelligent
Transportation Systems (ITSC), Oct. 2014, pp. 1160–1165, alessio.

[42] F. Schuldt, “Ein Beitrag für den methodischen Test von automatisierten Fahrfunktionen
mit Hilfe von virtuellen Umgebungen, Towards testing of automated driving
functions in virtual driving environments,” Apr. 2017, marc. [Online]. Available:
https://publikationsserver.tu-braunschweig.de/receive/dbbs mods 00064747

[43] A. Andrews, M. Abdelgawad, and A. Gario, “Towards world model-based test generation
in autonomous systems,” in Model-Driven Engineering and Software Development
(MODELSWARD), 2015 3rd International Conference on. IEEE, 2015, pp. 1–12, alessio.
[Online]. Available: http://ieeexplore.ieee.org/abstract/document/7323096/

[44] S. Lee, J. Kim, H. Song, and S. Kim, “A 3-dimensional real-time traffic simulator consider-
ing the interaction among autonomous and human-driven vehicles,” in 17th International
IEEE Conference on Intelligent Transportation Systems (ITSC), Oct. 2014, pp. 1917–1918.

[45] J. Felez, J. Maroto, J. M. Cabanellas, and J. M. Mera, “A full-scale simulation model to
reproduce urban traffic in real conditions in driving simulators,” SIMULATION, vol. 89,
no. 9, pp. 1099–1114, Sep. 2013. [Online]. Available: http://journals.sagepub.com/doi/10.
1177/0037549713483557

[46] D. Sportillo, A. Paljic, M. Boukhris, P. Fuchs, L. Ojeda, and V. Roussarie,
“An Immersive Virtual Reality System for Semi-autonomous Driving Simulation: A
Comparison Between Realistic and 6-DoF Controller-based Interaction,” in Proceedings
of the 9th International Conference on Computer and Automation Engineering, ser.
ICCAE ’17. New York, NY, USA: ACM, 2017, pp. 6–10, alessio. [Online]. Available:
http://doi.acm.org/10.1145/3057039.3057079

[47] M. Feilhauer and J. Häring, “A multi-domain simulation approach to validate Advanced
Driver Assistance Systems,” in 2016 IEEE Intelligent Vehicles Symposium (IV), Jun. 2016,
pp. 1179–1184.

[48] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “DeepDriving: Learning Affordance for
Direct Perception in Autonomous Driving.” IEEE, Dec. 2015, pp. 2722–2730, alessio.
[Online]. Available: http://ieeexplore.ieee.org/document/7410669/

[49] M. Johnson-Roberson, C. Barto, R. Mehta, S. N. Sridhar, K. Rosaen, and R. Vasudevan,
“Driving in the Matrix: Can Virtual Worlds Replace Human-Generated Annotations
for Real World Tasks?” arXiv:1610.01983 [cs], Oct. 2016, arXiv: 1610.01983. [Online].
Available: http://arxiv.org/abs/1610.01983

67

http://arxiv.org/abs/1704.01006
https://publikationsserver.tu-braunschweig.de/receive/dbbs_mods_00064747
http://ieeexplore.ieee.org/abstract/document/7323096/
http://journals.sagepub.com/doi/10.1177/0037549713483557
http://journals.sagepub.com/doi/10.1177/0037549713483557
http://doi.acm.org/10.1145/3057039.3057079
http://ieeexplore.ieee.org/document/7410669/
http://arxiv.org/abs/1610.01983

[50] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An Open
Urban Driving Simulator,” arXiv:1711.03938 [cs], Nov. 2017, arXiv: 1711.03938. [Online].
Available: http://arxiv.org/abs/1711.03938

[51] Rockstar Games, “Grand Theft Auto V,” 2013. [Online]. Available: https:
//www.rockstargames.com/V/

[52] E. Makuch, “Rockstar: More than 1,000 people made GTAV.” [Online]. Available: https://
www.gamespot.com/articles/rockstar-more-than-1000-people-made-gtav/1100-6415330/

[53] M. Martinez, C. Sitawarin, K. Finch, L. Meincke, A. Yablonski, and A. Kornhauser,
“Beyond Grand Theft Auto V for Training, Testing and Enhancing Deep Learning in Self
Driving Cars,” arXiv:1712.01397 [cs], Dec. 2017, arXiv: 1712.01397. [Online]. Available:
http://arxiv.org/abs/1712.01397

[54] J. Togelius, E. Kastbjerg, D. Schedl, and G. N. Yannakakis, “What is Procedural Content
Generation?: Mario on the Borderline,” in Proceedings of the 2Nd International Workshop
on Procedural Content Generation in Games, ser. PCGames ’11. New York, NY, USA:
ACM, 2011, pp. 3:1–3:6. [Online]. Available: http://doi.acm.org/10.1145/2000919.2000922

[55] N. Shaker, J. Togelius, and M. J. Nelson, Procedural Content Generation in Games, 1st ed.
Springer Publishing Company, Incorporated, 2016.

[56] R. M. Smelik, “A declarative approach to procedural generation of virtual worlds.” Ph.D.
dissertation, [s.n.], S.l., 2011.

[57] D. Loiacono, L. Cardamone, and P. L. Lanzi, “Automatic Track Generation for High-End
Racing Games Using Evolutionary Computation,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 3, no. 3, pp. 245–259, Sep. 2011, alessio.

[58] R. B. Abdessalem, S. Nejati, L. C. Briand, and T. Stifter, “Testing advanced driver assis-
tance systems using multi-objective search and neural networks,” in 2016 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE), Sep. 2016, pp. 63–74,
alessio.

[59] A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J.-M. Allen, V.-D. Lam, A. Bewley,
and A. Shah, “Learning to Drive in a Day,” arXiv:1807.00412 [cs, stat], Jul. 2018, arXiv:
1807.00412. [Online]. Available: http://arxiv.org/abs/1807.00412

[60] G. E. Mullins, P. G. Stankiewicz, and S. K. Gupta, “Automated generation of diverse and
challenging scenarios for test and evaluation of autonomous vehicles,” in Robotics and
Automation (ICRA), 2017 IEEE International Conference on. IEEE, 2017, pp. 1443–1450,
alessio. [Online]. Available: http://ieeexplore.ieee.org/abstract/document/7989173/

[61] S. Huang and D. Ramanan, “Expecting the Unexpected: Training Detectors for
Unusual Pedestrians with Adversarial Imposters,” 2017, alessio Marc. [Online]. Available:
https://pdfs.semanticscholar.org/9e53/78e7b336c89735d3bb15cf67eff96f86d39a.pdf

[62] J. Togelius, A. J. Champandard, P. L. Lanzi, M. Mateas, A. Paiva, M. Preuss, and K. O.
Stanley, “Procedural Content Generation: Goals, Challenges and Actionable Steps,” in
Artificial and Computational Intelligence in Games, ser. Dagstuhl Follow-Ups, S. M.
Lucas, M. Mateas, M. Preuss, P. Spronck, and J. Togelius, Eds. Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2013, vol. 6, pp. 61–75. [Online].
Available: http://drops.dagstuhl.de/opus/volltexte/2013/4336

68

http://arxiv.org/abs/1711.03938
https://www.rockstargames.com/V/
https://www.rockstargames.com/V/
https://www.gamespot.com/articles/rockstar-more-than-1000-people-made-gtav/1100-6415330/
https://www.gamespot.com/articles/rockstar-more-than-1000-people-made-gtav/1100-6415330/
http://arxiv.org/abs/1712.01397
http://doi.acm.org/10.1145/2000919.2000922
http://arxiv.org/abs/1807.00412
http://ieeexplore.ieee.org/abstract/document/7989173/
https://pdfs.semanticscholar.org/9e53/78e7b336c89735d3bb15cf67eff96f86d39a.pdf
http://drops.dagstuhl.de/opus/volltexte/2013/4336

[63] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA, USA: MIT Press,
1996.

[64] J. Fritsch, T. Kühnl, and A. Geiger, “A new performance measure and evaluation bench-
mark for road detection algorithms,” in 16th International IEEE Conference on Intelligent
Transportation Systems (ITSC 2013), Oct. 2013, pp. 1693–1700.

[65] F. Falcini, G. Lami, and A. M. Costanza, “Deep Learning in Automotive Software,” IEEE
Software, vol. 34, no. 3, pp. 56–63, May 2017, alessio.

[66] “OpenStreetMap.” [Online]. Available: https://www.openstreetmap.org/

[67] BeamNG GmbH, “BeamNG.research – BeamNG.” [Online]. Available: https://beamng.
gmbh/research/

[68] “OpenDRIVE - Home.” [Online]. Available: http://www.opendrive.org/

[69] J.-D. Boissonnat and M. Teillaud, Eds., Effective Computational Geometry for Curves
and Surfaces, ser. Mathematics and Visualization. Berlin Heidelberg: Springer-Verlag,
2006. [Online]. Available: //www.springer.com/de/book/9783540332589

[70] J. Y. C. Chen and J. E. Thropp, “Review of Low Frame Rate Effects on Human Perfor-
mance,” IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and
Humans, vol. 37, no. 6, pp. 1063–1076, Nov. 2007.

[71] “List of Unity games,” Aug. 2018, page Version ID: 853677984. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=List of Unity games&oldid=853677984

[72] “List of Unreal Engine games,” Aug. 2018, page Version ID: 853716981. [Online]. Avail-
able: https://en.wikipedia.org/w/index.php?title=List of Unreal Engine games&oldid=
853716981

[73] “Torque 3d | Products | GarageGames.com.” [Online]. Available: http://www.
garagegames.com/products/torque-3d

[74] A. Belbachir, “An embedded testbed architecture to evaluate autonomous car driving,”
Intel Serv Robotics, vol. 10, no. 2, pp. 109–119, Apr. 2017. [Online]. Available:
https://link.springer.com/article/10.1007/s11370-016-0213-6

[75] M. Althoff and J. M. Dolan, “Online Verification of Automated Road Vehicles Using Reach-
ability Analysis,” IEEE Transactions on Robotics, vol. 30, no. 4, pp. 903–918, Aug. 2014,
alessio.

[76] D. Yadron and D. Tynan, “Tesla driver dies in first fatal crash while using autopilot
mode,” The Guardian, Jun. 2016. [Online]. Available: http://www.theguardian.com/
technology/2016/jun/30/tesla-autopilot-death-self-driving-car-elon-musk

[77] J. Zhou, R. Schmied, A. Sandalek, H. Kokal, and L. del Re, “A Framework for Virtual
Testing of ADAS,” SAE International Journal of Passenger Cars - Electronic and Electrical
Systems, vol. 9, no. 1, Apr. 2016. [Online]. Available: http://papers.sae.org/2016-01-0049/

[78] D. Zhao, X. Huang, H. Peng, H. Lam, and D. J. LeBlanc, “Accelerated Evaluation of Au-
tomated Vehicles in Car-Following Maneuvers,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. PP, no. 99, pp. 1–12, 2017.

69

https://www.openstreetmap.org/
https://beamng.gmbh/research/
https://beamng.gmbh/research/
http://www.opendrive.org/
//www.springer.com/de/book/9783540332589
https://en.wikipedia.org/w/index.php?title=List_of_Unity_games&oldid=853677984
https://en.wikipedia.org/w/index.php?title=List_of_Unreal_Engine_games&oldid=853716981
https://en.wikipedia.org/w/index.php?title=List_of_Unreal_Engine_games&oldid=853716981
http://www.garagegames.com/products/torque-3d
http://www.garagegames.com/products/torque-3d
https://link.springer.com/article/10.1007/s11370-016-0213-6
http://www.theguardian.com/technology/2016/jun/30/tesla-autopilot-death-self-driving-car-elon-musk
http://www.theguardian.com/technology/2016/jun/30/tesla-autopilot-death-self-driving-car-elon-musk
http://papers.sae.org/2016-01-0049/

[79] D. Zhao and H. Peng, “From the Lab to the Street: Solving the Challenge of Accelerating
Automated Vehicle Testing,” arXiv preprint arXiv:1707.04792, 2017, alessio. [Online].
Available: https://arxiv.org/abs/1707.04792

[80] S. Müller, D. Hospach, O. Bringmann, J. Gerlach, and W. Rosenstiel, “Robustness Eval-
uation and Improvement for Vision-Based Advanced Driver Assistance Systems,” in 2015
IEEE 18th International Conference on Intelligent Transportation Systems, Sep. 2015, pp.
2659–2664, alessio.

[81] A. C. Madrigal, “Inside Waymo’s Secret World for Training Self-Driving Cars,”
The Atlantic, Aug. 2017. [Online]. Available: https://www.theatlantic.com/technology/
archive/2017/08/inside-waymos-secret-testing-and-simulation-facilities/537648/

[82] A. Ajmera, “Audi partners with Israel’s autonomous vehicle simulation startup...” Reuters,
Jun. 2018. [Online]. Available: https://www.reuters.com/article/us-cognata-audi/
audi-partners-with-israels-autonomous-vehicle-simulation-startup-cognata-idUSKBN1JM15X

[83] M. Nentwig, M. Miegler, and M. Stamminger, “Concerning the applicability of computer
graphics for the evaluation of image processing algorithms,” in 2012 IEEE International
Conference on Vehicular Electronics and Safety (ICVES 2012), Jul. 2012, pp. 205–210,
marc.

[84] “TORCS,” 1997. [Online]. Available: http://torcs.sourceforge.net/

[85] S. R. Richter, V. Vineet, S. Roth, and V. Koltun, “Playing for Data: Ground Truth
from Computer Games,” in Computer Vision – ECCV 2016, ser. Lecture Notes in
Computer Science. Springer, Cham, Oct. 2016, pp. 102–118, alessio. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-319-46475-6 7

[86] Unity, “Unity 3d.” [Online]. Available: https://unity3d.com/

[87] “Mapzen · an open, sustainable, and accessible mapping platform,” 2013. [Online].
Available: https://mapzen.com/

[88] “Unreal Engine 4,” 2014. [Online]. Available: https://www.unrealengine.com/en-US/
what-is-unreal-engine-4

[89] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-Fidelity Visual and
Physical Simulation for Autonomous Vehicles,” arXiv:1705.05065 [cs], May 2017, arXiv:
1705.05065. [Online]. Available: http://arxiv.org/abs/1705.05065

[90] “deepdrive: The easiest way to experiment with self-driving AI,” Jun. 2018, original-date:
2017-11-21T17:28:45Z. [Online]. Available: https://github.com/deepdrive/deepdrive

[91] D. Etherington, “Udacity open sources its self-driving car simulator for
anyone to use.” [Online]. Available: http://social.techcrunch.com/2017/02/08/
udacity-open-sources-its-self-driving-car-simulator-for-anyone-to-use/

[92] BeamNG, “BeamNG.drive.” [Online]. Available: https://www.beamng.com/

[93] M. Hendrikx, S. Meijer, J. Van Der Velden, and A. Iosup, “Procedural Content
Generation for Games: A Survey,” ACM Trans. Multimedia Comput. Commun.
Appl., vol. 9, no. 1, pp. 1:1–1:22, Feb. 2013, alessio. [Online]. Available:
http://doi.acm.org/10.1145/2422956.2422957

70

https://arxiv.org/abs/1707.04792
https://www.theatlantic.com/technology/archive/2017/08/inside-waymos-secret-testing-and-simulation-facilities/537648/
https://www.theatlantic.com/technology/archive/2017/08/inside-waymos-secret-testing-and-simulation-facilities/537648/
https://www.reuters.com/article/us-cognata-audi/audi-partners-with-israels-autonomous-vehicle-simulation-startup-cognata-idUSKBN1JM15X
https://www.reuters.com/article/us-cognata-audi/audi-partners-with-israels-autonomous-vehicle-simulation-startup-cognata-idUSKBN1JM15X
http://torcs.sourceforge.net/
https://link.springer.com/chapter/10.1007/978-3-319-46475-6_7
https://unity3d.com/
https://mapzen.com/
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
http://arxiv.org/abs/1705.05065
https://github.com/deepdrive/deepdrive
http://social.techcrunch.com/2017/02/08/udacity-open-sources-its-self-driving-car-simulator-for-anyone-to-use/
http://social.techcrunch.com/2017/02/08/udacity-open-sources-its-self-driving-car-simulator-for-anyone-to-use/
https://www.beamng.com/
http://doi.acm.org/10.1145/2422956.2422957

[94] H. Long, “Procedurally generated realistic virtual rural worlds,” Thesis, University of
Cape Town, 2016. [Online]. Available: https://open.uct.ac.za/handle/11427/20874

[95] R. M. Smelik, T. Tutenel, R. Bidarra, and B. Benes, “A Survey on Procedural Modelling
for Virtual Worlds,” Computer Graphics Forum, vol. 33, no. 6, pp. 31–50, Sep. 2014, alessio.
[Online]. Available: http://onlinelibrary.wiley.com/doi/10.1111/cgf.12276/abstract

[96] G. Chen, G. Esch, P. Wonka, P. Müller, and E. Zhang, “Interactive procedural street
modeling,” in ACM transactions on graphics (TOG), vol. 27. ACM, 2008, p. 103, alessio.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1360702

[97] Y. I. H. Parish and P. Müller, “Procedural Modeling of Cities,” in Proceedings of
the 28th Annual Conference on Computer Graphics and Interactive Techniques, ser.
SIGGRAPH ’01. New York, NY, USA: ACM, 2001, pp. 301–308. [Online]. Available:
http://doi.acm.org/10.1145/383259.383292

[98] L. Cardamone, P. L. Lanzi, and D. Loiacono, “TrackGen: An interactive track generator
for TORCS and Speed-Dreams,” Applied Soft Computing, vol. 28, pp. 550–558, Mar. 2015.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/S1568494614005705

[99] T. Georgiou and Y. Demiris, “Personalised track design in car racing games,” in 2016 IEEE
Conference on Computational Intelligence and Games (CIG), Sep. 2016, pp. 1–8, alessio.

[100] D. Loiacono, L. Cardamone, and P. L. Lanzi, “Simulated Car Racing Championship:
Competition Software Manual,” arXiv:1304.1672 [cs], Apr. 2013, arXiv: 1304.1672.
[Online]. Available: http://arxiv.org/abs/1304.1672

[101] “CommonRoad.” [Online]. Available: http://commonroad.gitlab.io/

[102] R. Sedgewick, Algorithms in C, Part 5: Graph Algorithms, Third Edition, 3rd ed. Addison-
Wesley Professional, 2001.

[103] A. Arcuri and L. Briand, “A Hitchhiker’s Guide to Statistical Tests for Assessing
Randomized Algorithms in Software Engineering,” Softw. Test. Verif. Reliab., vol. 24,
no. 3, pp. 219–250, May 2014. [Online]. Available: http://dx.doi.org/10.1002/stvr.1486

[104] S. Klingelschmitt, F. Damerow, and J. Eggert, “Managing the complexity of inner-city
scenes: An efficient situation hypotheses selection scheme,” in 2015 IEEE Intelligent Ve-
hicles Symposium (IV), Jun. 2015, pp. 1232–1239, alessio.

[105] C. Williams and E. i. C. . A. . a. . tweet btn(), “Stop lights, sunsets,
junctions are tough work for Google’s robo-cars.” [Online]. Available: https:
//www.theregister.co.uk/2016/08/24/google self driving car problems/

[106] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic
algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp.
182–197, Apr. 2002.

71

https://open.uct.ac.za/handle/11427/20874
http://onlinelibrary.wiley.com/doi/10.1111/cgf.12276/abstract
http://dl.acm.org/citation.cfm?id=1360702
http://doi.acm.org/10.1145/383259.383292
http://www.sciencedirect.com/science/article/pii/S1568494614005705
http://arxiv.org/abs/1304.1672
http://commonroad.gitlab.io/
http://dx.doi.org/10.1002/stvr.1486
https://www.theregister.co.uk/2016/08/24/google_self_driving_car_problems/
https://www.theregister.co.uk/2016/08/24/google_self_driving_car_problems/

	Introduction
	Problem Statement
	Contributions
	Structure

	Background
	Genetic Algorithms
	Polylines
	Video Game Engines

	State of the Art
	Naturalistic Field Operational Tests
	Simulation Testing
	Video Game Engines as Simulators
	Procedural Content Generation
	Conclusion

	Method
	Approach Overview
	Test Overview
	Lanes
	Road Segments
	Roads
	Road Networks
	Boundary
	Tests

	Generation & Modification
	Road Segment Generation
	Road Generation
	Test Generation

	Genetic Algorithm
	Crossover (Join)
	Crossover (Merge)
	Mutation (Segment replacement)
	Notes on the Genetic Algorithm

	Test Execution
	Metrics
	Trace Analysis
	Lane Distance Fitness
	Suite Diversity
	Auxiliary data

	Implementation
	BeamNG.research Overview
	Test Execution

	Evaluation
	Test subject
	Experiment 1: Comparison with Random
	Experiment design
	Hypotheses
	Results
	Discussion

	Experiment 2: Single- versus Multi-road
	Experiment design
	Hypotheses
	Results
	Discussion

	Experiment 3: Increasing diversity
	Experiment design
	Hypotheses
	Results
	Discussion

	Experiment 4: Mutations
	Experiment design
	Hypotheses
	Results
	Discussion

	Conclusions
	Limitations

	Future Work
	Different Diversity Metric
	Varying Height
	Varying Lane Width
	Multiple Lanes
	Obstacles on the Road
	Let Ego-Vehicle Pick a Path

